онзводство контрольно-измерительны

приборов

средств

автоматизации

ПРЕОБРАЗОВАТЕЛЬ РЕГИСТРИРУЮЩИЙ Ш932.9РС

(модификация 29.031)

Руководство по эксплуатации КПЛШ.466429.019 РЭ

(редакция 05)

Россия, Екатеринбург, www.sensorika.org

КПЛШ.466429.019 РЭ Стр. 2

ОГЛАВЛЕНИЕ

	ВВЕДЕН	ИЕ	3	
1	НАЗНАЧ	ЕНИЕ	3	
2	ТЕХНИЧ	ЕСКИЕ ХАРАКТЕРИСТИКИ	4	
3	УСТРОЙ	СТВО ПРИБОРА	5	
3.1		работы	5	
3.2	Конструк	- ЦИЯ	6	
4	МАРКИР	ОВКА И УПАКОВКА	8	
4.1	Маркиро	вка	8	
4.2			8	
5	ИСПОЛЬ	ЗОВАНИЕ ПО НАЗНАЧЕНИЮ	9	
5.1	Общие за	мечания	9	
5.2	Меры без	опасности	9	
5.3	Порядок	установки и монтажа	10	
5.4	Подключ	ение внешних цепей	12	
5.5	Работа с	прибором	13	
6	ТЕХНИЧ	ЕСКОЕ ОБСЛУЖИВАНИЕ	17	
7	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ			
8	КОМПЛІ	ЕКТ ПОСТАВКИ	18	
9	ГАРАНТ	ИИ ИЗГОТОВИТЕЛЯ	19	
Прил	пожения:			
_	южение А	ВНЕШНИЕ ПОДКЛЮЧЕНИЯ К ПРИБОРУ	20	
	южение Б	КРОСС-ПЛАТА КРС ДЛЯ РЕЛЕЙНЫХ ВХОДНЫХ		
1		СИГНАЛОВ.	21	
Прил	южение В	СХЕМЫ ПОДКЛЮЧЕНИЯ К КРОСС-ПЛАТАМ	22	
	южение Г	КРОСС-ПЛАТА Uпит ДЛЯ ОРГАНИЗАЦИИ		
1		ПРИЕМА СУХИХ КОНТАКТОВ	23	
Приложение Д		ПЕРЕЧЕНЬ КОНТАКТОВ РАЗЪЕМОВ	24	
Приложение Е		СХЕМА ПОДКЛЮЧЕНИЯ К ЭВМ		
		ПО ИНТЕРФЕЙСУ RS485	26	
Прил	южение Ж	ЗАМЕНА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	27	
Приложение К		ОБОЗНАЧЕНИЯ ПРИ ЗАКАЗЕ ПРИБОРА	29	

Настоящее Руководство по эксплуатации (РЭ) предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, эксплуатацией, техническим обслуживанием и поверкой конструкцией, многоканальных регистрирующих преобразователей Ш932.9РС (в дальнейшем прибор).

Предприятие-изготовитель постоянно совершенствует свою продукцию и оставляет за собой право вносить изменения и уточнения в выпускаемые изделия без предварительного уведомления.

Приступать к работе с прибором только после ознакомления с настоящим руководством по эксплуатации.

1 НАЗНАЧЕНИЕ

- 1.1 Прибор предназначен для применения в качестве регистрирующего устройства, работающего в составе системы.
 - 1.2 Область применения:
 - химическая, нефтехимическая, пищевая промышленность;
 - металлургия, машиностроение, энергетика;
- производство стройматериалов, синтетических волокон, пластмасс, био и медпрепаратов, фармакология;
 - лабораторные и научные исследования.
 - 1.3 Выполняемые функции:
 - регистрирует состояния релейных сигналов;
- результаты регистрации накапливает в энергонезависимой памяти с привязкой по времени (архив событий);
- выдает информацию в цифровом виде на верхний уровень системы через встроенный порт RS232/RS485 о текущих состояниях релейных сигналов и архива событий.
 - 1.4 Условия эксплуатации:
 - закрытые взрывобезопасные помещения без агрессивных паров и газов;
 - от 5 до 60 °C; - температура окружающей среды

от 30 до 80 %;

- относительная влажность воздуха

- атмосферное давление

от 84 до 106,7 кПа

(от 630 до 800 мм рт. ст.);

от 10 до 55 Гц до 0,15 мм.

- вибрация с частотой и амплитудой

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Количество входных (релейных) сигналов: 32; 64.
- 2.2 Входные релейные сигналы:

Лог. «1» - напряжение от 12 до 35 В;

Лог. «0» - напряжение от 0 до 7 В;

- 2.3 Входное сопротивление канала: > 10 кОм.
- 2.4 **Период опроса всех каналов** программируется и может быть установлен: 1 с, 2 с, 5 с, 10 с.
- 2.5 **Количество замеров в цикле измерения** программируется и может быть установлено: 3, 5, 7, 9, ..., 255 (на периоде опроса 1 c, 2 c, 5 c, 10 c).
 - 2.6 **Глубина архива: 256** кБайт (18665 записей).

Каждая запись содержит дату, время и результаты опроса всех 64-х каналов. Записи формируются по событиям изменения состояния релейных сигналов, т.е. если состояния релейных сигналов не меняются, то и записи в архив не происходит.

2.7 Сохранение параметров и архива

При отключенном питании все установленные параметры и содержание архива измерений сохраняются в энергонезависимой памяти, которая не требует применения дополнительных элементов питания.

- 2.8 **Автономное управление** осуществляется с ПК по интерфейсу RS232 или RS485.
 - 2.8.1 Характеристика интерфейса RS485:
 - протокол MODBUS;
 - скорость передачи 9600, 19200, 38400, 57600, 115200 бит/с;
 - диапазон задания адресов 1-255;
 - длина линии связи (экранированная витая пара), не более 1000 м.
 - 2.9 Характеристика питания
 - напряжение питания $\sim 220^{+45}/_{-110}$ В, 50 ± 2 Гц;
 - резервное напряжение питания $+(24^{+11}/_{-4})$ В;
 - потребляемая мощность, не более 15 ВА.

Питание прибора Ш932.9PC может осуществляться как от сети ~220 В, так и от сети постоянного тока 24 В. Возможно одновременное подключение обеих сетей на случай пропадания одного из напряжений.

2.10 Массо-габаритные характеристики

габариты прибора, не более
 150x150x350 мм;

- масса, не более

5 кг;

- размеры монтажного окна

147х147 мм

2.11 Режим работы - непрерывный. Время установления рабочего режима - не более **5 мин**.

- 2.12 Средняя наработка на отказ 50 000 часов.
- 2.13 Средний срок службы не менее 10 лет.
- 2.14 Вид защиты с фронтальной стороны IP54, вид защиты с обратной стороны IP20.

3 УСТРОЙСТВО ПРИБОРА

3.1 Принцип работы

Структурная схема прибора приведена на рисунке 3.1, где:

ЭК – электронный коммутатор каналов;

АЦНП – аналого-цифровой нормирующий преобразователь;

БП – блок питания;

ПР – процессор;

ИН – блок индикации включения питания.



Рисунок 3.1 – Структурная схема прибора Ш932.9РС

Входные релейные сигналы поступают через электронный коммутатор на аналого-цифровой преобразователь (АЦНП), который обеспечивает прием, нормирование и преобразование в цифровую форму аналоговых сигналов.

Информация в цифровом виде вводится в модуль процессора (ПР), где обрабатывается алгоритмически, обеспечивая запоминание данных с привязкой по времени. Процессор управляет работой всех функциональных устройств прибора.

БП обеспечивает питающими напряжениями блоки прибора.

Прибор периодически опрашивает все измерительные каналы, причем на интервале опроса равном 1-й секунде (2, 5, 10) прибор может опрашивать все измерительные каналы по 3, 5, 7, ..., 255 раз, усредняя затем эти замеры. Это позволяет избавиться от различного рода кратковременных наводок и помех.

Обмен информацией прибора с персональным компьютером (ПК) выполняются параллельно с указанными выше операциями, и не влияет на период опроса.

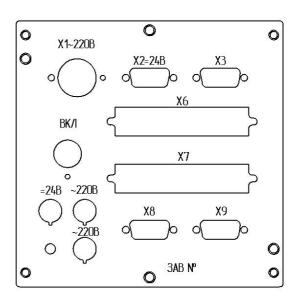
Обмен информацией прибора с ПК осуществляется по интерфейсу RS485. Протокол обмена MODBUS RTU. При обмене ПК должен быть ведущим (master), а прибор – всегда ведомым.


3.2 Конструкция

Все элементы прибора расположены на печатных платах, расположенных внутри корпуса. Корпус прибора рассчитан на щитовой утопленный монтаж на вертикальной плоскости. На передней панели прибора — индикация сети питания, на задней панели размещены электрические соединители для подключения внешних соединений, сетевые предохранители, тумблер включения питания и винт заземления.

Подключение сигнальных и силовых цепей производится с помощью кроссплат (входят в комплект поставки), которые устанавливаются на DIN-рейку типа $TS35 \times 7,5$ или $TS35 \times 15$.

Демонтаж кросс-плат с DIN-реек производится как показано на рисунке ниже:


КПЛШ.466429.019 РЭ Стр. 7

Лицевая панель прибора

Задняя панель прибора Ш932.9РС

Примечание: Разъемы X8, X9 устанавливаются по заказу потребителя (исполнение прибора « $\mathbf{6}$ » со встроенным источником питания для приема «сухих контактов» см. **Приложение К**).

Соединители для подключения внешних цепей

Обоз-	Тип разъема	Назначение	Примечание
наче-			
ние			
X1	CANON23 3M, вилка	Питание прибора 220 В 50 Гц	
X2	DB-9F, розетка	Питание прибора =24 В	
X3	DB-9M, вилка	Подключение ПЭВМ (RS232/485)	
X6	CENI-50F, розетка	Подключение кросс-платы КРС-32	
		(входы с 1 по 32-й)	
X7	CENI-50F, розетка	Подключение кросс-платы КРС-32-1	
		(входы с 33 по 64-й)	
X8	DB-9F, розетка	Подключение кросс-платы Uпит.	Установлены
			в приборе
X9	DB-9F, розетка	Подключение кросс-платы Uпит-1	исполнения
			«б»

4 МАРКИРОВКА И УПАКОВКА

4.1 Маркировка

- 4.1.1 На лицевой панели прибора нанесены:
- товарный знак предприятия-изготовителя;
- условное обозначение исполнения прибора.
- 4.1.2 На задней панели корпуса прибора нанесены:
- обозначения разъемов и клемм для внешних подключений;
- условное обозначение защитного заземления;
- заводской номер прибора.

4.2 Упаковка

- 4.2.1 Упаковка прибора состоит из потребительской и транспортной тары. Каждый прибор (вместе с формуляром) герметично заваривается в чехол из полиэтиленовой пленки и упаковывается в коробку из гофрированного картона. Допускается упаковка 2-х приборов в одну картонную коробку. Руководство по эксплуатации и СD-диски с прикладным ПО укладываются в коробку, также заваренные в чехол из полиэтиленовой пленки.
- 4.2.2 Для транспортировки упакованные приборы укладываются в сплошной деревянный ящик, внутренние стенки которого выстланы бумагой битумной, и прокладываются вставками с амортизирующими резиновыми втулками.
 - 4.2.3 В каждый ящик вкладывается упаковочный лист.

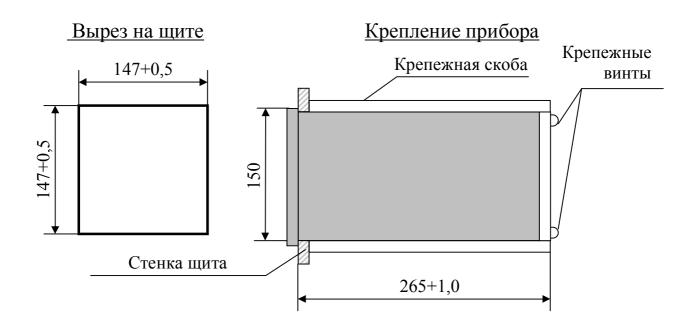
5 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

5.1 Обшие замечания

- 5.1.1 При получении ящиков с приборами необходимо убедиться в полной сохранности тары. При наличии повреждений тары необходимо составить акт в установленном порядке и обратиться с рекламацией к транспортной организации. На приборы с механическими повреждениями гарантия предприятия-изготовителя не распространяется.
- 5.1.2 В зимнее время включение прибора проводить в отапливаемом помещении не менее чем через 8 часов после внесения ящиков в помещение.
- 5.1.3 Необходимо проверить комплектность поставки в соответствии с формуляром на прибор. В формуляре укажите дату ввода прибора в эксплуатацию. Формуляр необходимо сохранять в течение всего срока эксплуатации прибора, т.к. он является юридическим документом при предъявлении рекламаций предприятию-изготовителю.

5.2 Меры безопасности

- 5.2.1 При работе с прибором опасным производственным фактором является повышенное напряжение в электрической цепи, замыкание которой может произойти через тело человека.
- 5.2.2 При эксплуатации прибора и при его периодических поверках следует соблюдать «Правила технической эксплуатации электроустановок» (ПТЭ) и «Правила техники безопасности при эксплуатации электроустановок» (ПТБ).
- 5.2.3 Подключение внешних цепей, осмотр и обслуживание прибора производить **только при отключенном напряжении питания.**
 - 5.2.4 При работе прибор должен быть надежно заземлен.
 - 5.2.5 При работе с прибором категорически ЗАПРЕЩАЕТСЯ:
- эксплуатировать прибор в условиях и режимах, отличающихся от указанных в руководстве по эксплуатации;
 - эксплуатировать прибор со снятым кожухом;
 - производить смену предохранителей без отключения прибора от сети.


- 5.3 Порядок установки и монтажа
- 5.3.1 Установка и подключение должно производиться **квалифицированными специалистами.**
- 5.3.2 Прибор устанавливается в помещении, где в воздухе нет вредных примесей, вызывающих коррозию (аммиака, сернистых и других агрессивных газов).

Недопустимо использовать прибор при температуре ниже 0 и выше 60 °C и относительной влажности выше 80 %.

Запрещается располагать прибор вблизи источников тепла и электрических полей с магнитной индукцией более 0,2 мГн (силовые трансформаторы, дроссели, электронагреватели, неэкранированные электрические кабели и т.д.).

Приборы должны устанавливаться вне взрывоопасных зон помещений или наружных установок.

- 5.3.3 Не устанавливать прибор на месте, подверженном тряске и вибрации. В противном случае при креплении прибора на щите необходимо использовать амортизаторы.
- 5.3.4 Прибор рассчитан на утопленный монтаж на вертикальной панели щита.

- 5.3.5 Крепление прибора осуществляется скобой, которая с помощью крепежных винтов прижимает обечайку корпуса к наружной стороне щита.
- 5.3.6 Кросс-платы для подключения внешних устройств располагают в непосредственной близости от прибора (не более 1 м) на задней стенке щита или в любом другом удобном для доступа месте.
- 5.3.7 Перед монтажом необходимо провести внешний осмотр прибора, обратив внимание на:
 - маркировку (соответствие маркировки карте заказа);
 - целостность корпуса прибора;
 - отсутствие повреждений разъемов прибора и клеммных колодок кросс-плат;
 - наличие и целостность предохранителей.
- 5.3.8 До подсоединения разъемов и кросс-плат прибор должен быть заземлен. Сопротивление заземляющего провода не должно превышать 1 Ом. Место подсоединения заземляющего проводника необходимо тщательно зачистить и покрыть слоем антикоррозионной смазки.
- 5.3.9 Монтаж необходимо проводить при отключенном напряжении питания.
- 5.3.10 При монтаже прибора необходимо дополнительно соблюдать следующие указания:
 - необходимо выделить в отдельные кабели: входные цепи, выходные цепи, цепи питания;
 - не допускается совмещение проводов входных и выходных цепей прибора в общем экране;
 - провода цепей питания переменного тока необходимо скручивать не менее 10 раз на протяжении одного метра. Не скручиваются провода цепей питания, выполненные плоскими жгутами. Провода электромонтажа не должны иметь механического напряжения.

5.4 Подключение внешних цепей

- 5.4.1 Все внешние подключения к прибору осуществляются согласно схеме, приведенной в **приложении A.**
- 5.4.2 Напряжение питания ~220 В 50 Гц подключается к прибору кабелем питания, входящим в комплект поставки прибора. Распайка разъема питания X1 приведена в приложении Д.

Резервное напряжение питания **=24 В** подключается к розетке **X2** (DB-9) прибора. Распайка разъема питания **X2** приведена в **приложении** Д.

Питания прибора необходимо производить от сетей, не связанных с питанием мощных электроустановок. Подключение к источнику питания нескольких приборов производится отдельными проводами для каждого прибора. Питание одного прибора от другого не допускается. При наличии значительных импульсных помех в питающей сети ~220 В 50 Гц для повышения помехозащищенности прибора рекомендуется использовать разделительный трансформатор с заземленной экранной обмоткой либо сетевой фильтр.

5.4.3 **Подключение к ПЭВМ** осуществляется через последовательный порт RS232/485. Распайка выводов разъема **ХЗ** приведена в **приложении Д.** Подключение производится экранированной витой парой. Экран соединяется с клеммой заземления прибора.

Для обоих интерфейсов RS232 и RS485 используется один и тот же разъем. В одном кабеле рекомендуется прокладывать только те линии связи, которые необходимы для данного интерфейса. Схема подключения приборов к ПЭВМ по интерфейсу RS485 приведена в **приложении** E.

- 5.4.4 **Релейные цепи подключаются к** клеммам кросс-плат **КРС-32** (см. **приложение Б**) в соответствие с маркировкой и схемами подключения, приведенными в **приложении В**.
- 5.4.5 Для приема **сигналов типа** «**сухой контакт**» прибором со встроенным источником питания подключение входных сигналов производится с использованием кросс-плат Uпит (см. **приложение Г**) в соответствие с маркировкой и схемами подключения, приведенными в **приложении В.**

ВНИМАНИЕ. Для обеспечения необходимой помехозащищенности работы прибора следует строго соблюдать указания данного раздела.

5.5 Работа с прибором

Выключить тумблер питания на задней стенке прибора, сделать все необходимые внешние подключения в соответствии с п.5.4, подключить шнур питания к прибору и сети. Включить тумблер питания прибора.

ПРИМЕЧАНИЕ: После выключения питания прибора повторное его включение производить не ранее, чем через 5 с.

5.5.1 Взаимодействие прибора с ЭВМ

5.5.1.1 Прибор осуществляет обмен с ЭВМ по протоколу MODBUS через стандартный последовательный СОМ порт.

СОМ - порт ЭВМ должен быть настроен на следующие параметры обмена:

- скорость передачи данных 9600 бит/с, 19200, 38400, 57600, 115200 бит/сек;
- число бит данных 8;
- число стоповых бит 2;
- контроль по четности.

Вся информация передается 8-битными посылками в формате RTU MODBUS. Спецификацию на данный протокол можно взять с сайта http://www.modbus.org. Возможно сопряжение «точка — точка» с параметрами сигналов RS232, RS485 или сопряжение «общая шина» RS485.

Ш932.9РС всегда выполняет роль ведомого (Slave). Начало обмена определяется и инициируется только ведущим (Master). Обмен сообщениями: Запрос (Master) – Ответ (Slave). Максимальное время между запросом и ответом не более 1 с, а при чтении результатов измерений – не более 0,4 с.

Для взаимодействия по протоколу MODBUS Ш932.9PC поддерживает следующие функции:

0Х02. Чтение массива битовых регистров.

0Х03. Чтение массива 16-ти разрядных регистров.

0Х04. Чтение массива входных 16-ти разрядных регистров (аналоговые регистры).

0Х08. Диагностическая функция.

- 0X0000. Ответ совпадает с запросом (это подфункция функции 0X08).

0X10. Запись массива 16-ти разрядных регистров.

Поддерживаемые коды ошибок:

0Х01. Принятый код функции не поддерживается.

0Х02. Адрес данных, указанный в запросе, не доступен.

0Х03. Величина, содержащаяся в поле данных запроса, не является допустимой.

0Х06. Прибор занят обработкой команды. Запрос нужно повторить позже, когда прибор освободится.

Соответствие между номерами «регистров хранения» и передаваемыми через них параметрами приведено в таблице 5.1.

Таблица 5.1 — Номера «регистров хранения», используемые для чтения из прибора числовых данных функцией 0X03 и для записи числовых данных в прибор функцией 0X10

Номер регистра, (16 бит)	Параметр	Доступ	Примечание и ограничения для записи
0x00 - 0x04	Код фирмы	Чтение	
0x05	Код прибора	Чтение	
0x06	Версия ПО	Чтение	
0x07	Зарезервировано	Нет	Duymayyy
0x08	Зарезервировано	Нет	Внутренние
0x09	Зарезервировано	Нет	данные
0x0A	Заводской номер (месяц, год)	Чтение	фирмы
0x0B	Заводской номер (порядковый номер)	Чтение	
0x0C - 0xFF	Зарезервировано	Нет	
0x100	Год, месяц	Чтение/запись	Ограничения
0x101	Число, часы	Чтение/запись	даты и време-
0x102	Минуты, секунды	Чтение/запись	ни (0 год = 2000 год)
0x103	Номер текущей записи архива	Чтение	0 - 18664
0x104	Магистральный адрес	Чтение/запись	1 - 255
0x105	Скорость обмена	Чтение/запись	0-9600 Бод, 1- 19200 Бод 2-38400 Бод 3-57600 Бод 4-115200 Бод
0x106	Циклов в опросе	Чтение/запись	Нечетные числа в диапа зоне [1-255]
0x107	Период опроса	Чтение/запись	Значение из набора 1,2,5,10
0x107-0xFFFF	Зарезервировано	Нет	

Условия вывода кадра ошибки 0Х01:

- функция не поддерживается;

Условия вывода кадра ошибки 0Х02:

- недоступный адрес данных;
- в кадре запроса задано количество регистров, равное нулю;
- запрос данных из адреса, не имеющего доступа;

Условия вывода кадра ошибки 0Х03:

- загрузка 16-разрядных регистров информацией, выходящей за указанные в таблице 5.1 допуски;
- загрузка неверных данных в прибор.

5.5.1.2 Чтение произвольной записи из архивов и чтение результатов законченного цикла измерений (код функции 0X04)

По этому запросу прибор выдает запись из архива, номер которой задан в запросе. Адреса архивов:

Номер регистра, (16 бит)	Параметр	Доступ	Примеч
0x0000	Последний законченный цикл	Чтение	
0x0001-0x3FBF	Архив	Чтение	
0x3FC0-0xFFFF	Зарезервировано	Нет	

Запрос должен иметь следующую структуру:

Назначение байта	Значение
Адрес прибора	1 - 255
Код функции	04h
Номер архивной записи ст. байт	Начальный номер
Номер архивной записи мл. байт	регистра
Число регистров ст. байт	0
Число регистров мл. байт	От 1 до М [1, 8]
Контр. сумма мл. байт	CRC
Контр. сумма ст. байт	CRC

Задавая нужный номер записи и количество запрашиваемых регистров, ЭВМ может опрашивать соответствующую запись из архива прибора. Записи в архиве прибора нумеруются по порядку, начиная с 0. Номер присваивается записи при занесении ее в архив, с этим номером она хранится в архиве и выдается в ЭВМ по ее запросу. После заполнения всего архива следующим записям присваиваются номера, начиная с 0, а содержимое старых записей под этими номерами стирается по мере занесения новых записей.

Формат ответа, совпадает с ответом на запрос с функцией 0X03.

Содержание ответа для архива:

Номер регистра, (16 бит)	Параметр	Доступ	Примеч
0x 0 0	№ архивной записи	Чтение	
0x01	Год, месяц архивной записи	Чтение	
0x02	Число, часы архивной записи	Чтение	
0x03	Минуты секунды архивной записи	Чтение	
0x04-0x08	Состояния релейных входов	Чтение	
>0x07	Зарезервировано	Нет	

Дата и время передаются в виде 8-разрядных целых двоичных чисел. В 16-ти разрядном регистре передается по два параметра, один параметр - в старшем байте, второй - в младшем.

Номер записи присваивается прибором Ш932.9PC в порядке возрастания номеров и может использоваться программой ЭВМ для последующего запроса содержимого архива прибора.

Чтобы считать самую свежую информацию результатов измерений без привязки ко времени, необходимо использовать функцию 2 с начальным номером регистра равным 0 и количеством регистров равным 64.

Для считывания привязанных ко времени результатов последнего полностью законченного цикла измерений используется функция 4 с номером регистра, равным нулю, и количеством регистров равным 8.

5.5.1.3 Чтение произвольной записи из архива (код функции 0Х35)

Данная функция позволяет мастеру сети "Модбас" производить чтение произвольного блока данных из архива прибора, позволяя получать до 15 записей за 1 запрос к прибору. Архивные записи отображаются в адресное пространство согласно их номерам, при этом запись имеет следующий формат:

Смещение	Параметр	Доступ	Примеч
0x00	Год архивной записи	Чтение	
0x01	Месяц архивной записи	Чтение	
0x02	День архивной записи	Чтение	
0x03	Час архивной записи	Чтение	
0x04	Минута архивной записи	Чтение	
0x05	Секунда архивной записи	Чтение	
0x060x0D	Состояния релейных входов	Чтение	

Таким образом, запись с номером 0 будет иметь адрес 0, запись 1 – адрес 14, запись 3 – адрес 52 и т.д.

Запрос должен иметь следующую структуру:

Смещение	Назначение байта	Значение
0x00	Адрес прибора	1 - 255
0x01	Код функции	35h
0x02	Код архива	01h
0x03 - 0x06	Адрес считываемого блока	0 - 261310
0x07 - 0x08	Размер считываемого блока (байт)	1 - 252
	Контр. сумма мл. байт	CRC
	Контр. сумма ст. байт	CRC

Ответ имеет следующий вид:

Смещение	Назначение байта	Значение
0x00	Адрес прибора	1 - 255
0x01	Код функции	35h
0x02 - N	Считанный блок данных (253≥N≥3)	
N+1	Контр. сумма мл. байт	CRC
N+2	Контр. сумма ст. байт	CRC

5.5.1.5 Программное обеспечение связи прибора с ПЭВМ

Вместе с прибором поставляется следующее программное обеспечение:

- 1. Программа конфигуратор предназначена для программирования всех переменных характеристик прибора с ПЭВМ. Программа поставляется всегда и для любого количества адресов «сетевой».
- 2. ОРС-Сервер.
- 3. Бесплатная демо-версия Master-SCADA компании INSAT.
- 4. Программатор. Позволяет прошить в прибор новое программное обеспечение, которое постоянно расширяется и совершенствуется. Последние версии программ выкладываются на сайте предприятия-изготовителя.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

6.1 К эксплуатации прибора должны допускаться лица, изучившие настоящее руководство и прошедшие инструктаж по технике безопасности.

6.2 Внешний осмотр

В процессе эксплуатации прибор должен периодически подвергаться внешнему осмотру. При этом следует проверить надежность заземления, отсутствие обрывов или повреждений изоляции соединительных проводов.

Одновременно следует производить чистку при помощи сухой ветоши, а передней панели с помощью смоченного в спирте тампона.

Рекомендуемая периодичность осмотра – не реже одного раза в три месяца.

7 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

- 7.1 Приборы могут храниться в транспортной таре с укладкой в штабеля до 5 ящиков по высоте. Хранение приборов в потребительской таре допускается на стеллажах в отапливаемых вентилируемых складах при температуре от 5 до 40 °C и относительной влажности воздуха до 80 % при 25 °C и более низких температурах (при более высоких температурах относительная влажность ниже). Хранение приборов должно соответствовать условиям хранения по ГОСТ 15150: 1 без упаковки или во внутренней упаковке; 3 в транспортной упаковке.
- 7.2 Транспортирование приборов в транспортной упаковке предприятия-изготовителя допускается проводить любым транспортным средством с обеспечением защиты от дождя и снега при температуре окружающего воздуха от минус 20 до +60 °C и относительной влажности воздуха до 80 % (при температуре 25 °C).

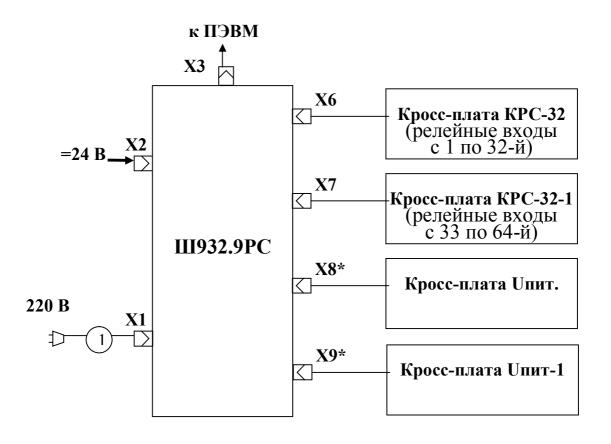
Не допускается кантовать и бросать ящики с приборами.

8 КОМПЛЕКТ ПОСТАВКИ

Наименование	Обозначение	Кол-во	Примеч
Прибор Ш932.9РС	КПЛШ.466429.019	1	
Формуляр	КПЛШ.466429.019 ФО	1	
Руководство	КПЛШ.466429. 019 РЭ	1	
по эксплуатации			
CD-диск	-	1	
с прикладным ПО			
Кросс-плата КРС-32	КПЛШ.468344.058	1	
Кросс-плата КРС-32-1	КПЛШ.468344.059	1*	*Только для прибора
			исполнения с 64-мя релейными входами
Кросс-плата Ипит.	КПЛШ.468344.048	1**	**Только для прибора
Кросс-плата Uпит-1	КПЛШ.468344.048-01	1**	исполнения «б» (см.Приложение К)
Кабель питания	КПЛШ.685619.645	1	
Предохранитель	ВП1-1 3,15 А	2	
Розетка	DB-9F с кожухом	1	
Спецотвертка	-	1	Для кросс-плат с пру-
_			жинными колодками

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 9.1 Предприятие-изготовитель гарантирует соответствие выпускаемых образцов прибора всем требованиям ТУ на них при соблюдении потребителем условий эксплуатации, транспортирования и хранения. Гарантийный срок (включая хранение) 24 месяца со дня изготовления прибора. Если прибор отгружен со склада предприятия-изготовителя в срок более двух недель после даты изготовления прибора, то гарантийный срок исчисляется с даты отгрузки прибора со склада предприятия-изготовителя.
- 9.2 Претензии к качеству прибора в период гарантийных обязательств принимаются к рассмотрению при условии отсутствия внешних повреждений, сохранности клейм и наличии формуляра, а также акта рекламации, составленного потребителем.
- 9.3 Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта.
- 9.4 Ремонт приборов осуществляет специализированная организация или предприятие-изготовитель. При направлении на ремонт прибор должен быть надежно упакован. Надежную защиту обеспечивает первоначальная транспортная упаковка.
- 9.5 По всем вопросам качества и эксплуатации прибора обращаться на предприятие-изготовитель: 620026, г. Екатеринбург, а/я 784, НПФ «Сенсорика»

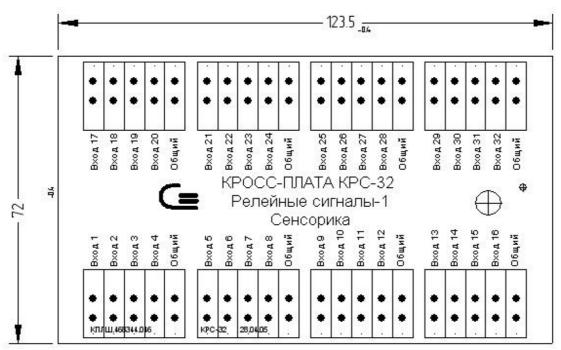

Телефакс: (8-343) 263-74-24

Телефон: (8-343) 350-90-31, 365-82-20

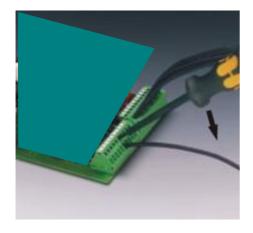
E-mail: mail@sensorika.org
http://www.sensorika.org

Приложение А (обязательное)

ВНЕШНИЕ ПОДКЛЮЧЕНИЯ К ПРИБОРУ Ш932.9РС



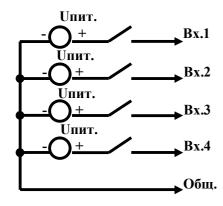
- *) Разъемы X8, X9 установлены только в приборе исполнения со встроенным источником питания для организации приема «сухих контактов»
- 1 шнур питания с разъемом X1 и стандартной евровилкой, входит в комплект поставки;

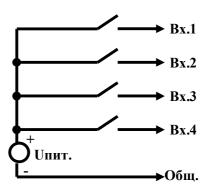

Кабель связи с ПЭВМ изготавливается пользователем. Ответная часть разъема X3 входит в комплект поставки.

Приложение Б (обязательное)

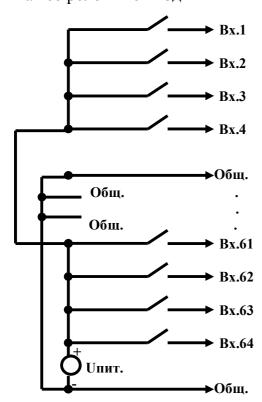
КРОСС-ПЛАТА КРС-32 ДЛЯ ПОДКЛЮЧЕНИЯ РЕЛЕЙНЫХ СИГНАЛОВ

Кросс-плата КРС-32 для подключения релейных сигналов с 1 по 32-й. Кросс-плата КРС-32-1 для подключения релейных сигналов с 33 по 64-й. У каждой колодки кросс-плат маркировка подключаемого сигнала (Вход n, Общий).




Концы подключаемых проводов зачищаются на длину 8 мм и зажимаются винтами клеммных колодок. У кросс-плат с пружинными колодками закрепляются с помощью специальной отвертки (входит в комплект поставки) как показано на рисунке слева.

Приложение В (обязательное)


СХЕМЫ ПОДКЛЮЧЕНИЯ РЕЛЕЙНЫХ СИГНАЛОВ К КРОСС-ПЛАТАМ КРС

а) с индивидуальным источником питания Uпит.

в) с общим источником питания Uпит. на все релейные входы

Примечание: Источник питания Uпит. может быть внешним или встроенным в прибор (в зависимости от исполнения прибора) Приложение Г (обязательное)

КРОСС-ПЛАТА Ипит.

для организации приема сухих контактов прибором со встроенным источником питания

Кросс-плата Uпит для релейных сигналов с 1 по 32-й. Кросс-плата Uпит -1 для релейных сигналов с 33 по 64-й.

У каждой клеммной колодки XP маркировка подключаемого сигнала. Концы подключаемых проводов зачищаются на длину 8 мм и зажимаются винтами клеммных колодок с помощью специальной отвертки (входит в комплект поставки) как показано в приложении Б.

Габаритные размеры кросс-платы не более 124×90×55 мм.

Приложение Д (обязательное)

ПЕРЕЧЕНЬ КОНТАКТОВ РАЗЪЕМОВ ПРИБОРА

X1 (питание)

Контакт	Цепь	Контакт	Цепь	Контакт	Цепь
1	~220B	2	~220B	3	Корпус

Х2 (резервное питание)

Контакт	Цепь	Контакт	Цепь
1		7	Общ. (24 В)
2	+ 24 B	8	Общ. (24 В)
3	+ 24 B	9	

X3

Контакт	цепь п	оследо-		цепь	последо-		цепь последова-		
	вательно	ОГО	Контакт	вательного		Контакт	тельного порта		
	порта		Komaki	порта		Roman	1031BHO1 0	порта	
	RS232	RS485		RS232	RS485		RS232	RS485	
1			4		A (+T)	7		LB	
2	RxD		5	Общий		8		Экран	
3	TxD		6		LA	9		B (-T)	

X6

7XU							
Конт	Цепь	Конт	Цепь	Конт	Цепь	Конт	Цепь
1	Вход 1	6	Вход 9	11	Вход 17	16	Вход 25
26	Вход 2	31	Вход 10	36	Вход 18	41	Вход 26
2	Вход 3	7	Вход 11	12	Вход 19	17	Вход 27
27	Вход 4	32	Вход 12	37	Вход 20	42	Вход 28
3	Общий	8	Общий	13	Общий	18	Общий
28	Вход 5	33	Вход 13	38	Вход 21	43	Вход 29
4	Вход 6	9	Вход 14	14	Вход 22	19	Вход 30
29	Вход 7	34	Вход 15	39	Вход 23	44	Вход 31
5	Вход 8	10	Вход 16	15	Вход 24	20	Вход 32
30	Общий	35	Общий	40	Общий	45	Общий

КПЛШ.466429.019 РЭ Стр. 25

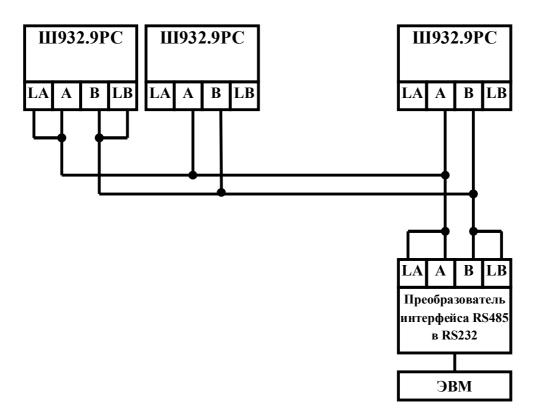
Продолжение приложения Д

X7

Конт	Цепь	Конт	Цепь	Конт	Цепь	Конт	Цепь
1	Вход 33	6	Вход 41	11	Вход 49	16	Вход 57
26	Вход 34	31	Вход 42	36	Вход 50	41	Вход 58
2	Вход 35	7	Вход 43	12	Вход 51	17	Вход 59
27	Вход 36	32	Вход 44	37	Вход 52	42	Вход 60
3	Общий	8	Общий	13	Общий	18	Общий
28	Вход 37	33	Вход 45	38	Вход 53	43	Вход 61
4	Вход 38	9	Вход 46	14	Вход 54	19	Вход 62
29	Вход 39	34	Вход 47	39	Вход 55	44	Вход 63
5	Вход 40	10	Вход 48	15	Вход 56	20	Вход 64
30	Общий	35	Общий	40	Общий	45	Общий

X8*

	Конт	Цепь	Конт	Цепь	Конт	Цепь	Конт	Цепь
	1	Ипит.	6	Ипит.	3	Общий	8	Общий
ſ	2	Ипит.	7	Ипит.	4	Общий	9	Общий


X9*

Конт	Цепь	Конт	Цепь	Конт	Цепь	Конт	Цепь
1	U пит.	6	Ипит.	3	Общий	8	Общий
2	Ипит.	7	Ипит.	4	Общий	9	Общий

^{*} Установлены только на приборе со встроенным источником питания (см. исполнение «б» Приложения K)

Приложение Е (обязательное)

Схема соединения Ш932.9PC с ЭВМ по интерфейсу RS485

Где: А и В – сигнальные выходы;

LA и LB - нагрузочный резистор 120 Ом и подтягивающие

резисторы;

Экран - выход для подключения экранирующей оплетки

кабеля.

В длинных линиях связи, а так же при работе на высоких скоростях обмена для улучшения помехозащищенности линии рекомендуется соединить выходы A с LA, выходы B с LB на двух наиболее удаленных друг от друга приборах, объединенных в одну сеть. На остальных приборах контакты LA и LB никуда не подключать!

Приложение Ж (справочное)

ЗАМЕНА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Пользуясь данным приложением РЭ можно изменять программное обеспечение прибора.

1 Необходимое оборудование и программное обеспечение

1.1 Оборудование

ПЭВМ IBM-PC имеющая один свободный СОМ-порт с интерфейсом RS232. Технологический кабель для связи порта СОМ прибора с СОМ- портом IBM-PC. Кабель должен обеспечить следующие связи:

	Разъем ХЗ	СОМ-порт ІВМ-РС			
	Ш932.9РС	(зависит от ІВМ-РС)			
Тип разъема	DB-9	DB-9	DB-25		
Прием	2 (RX)	3 (TX)	2 (TX)		
Передача	3 (TX)	2 (RX)	3 (RX)		
Общий	5 (GND)	5 (GND)	7 (GND)		

1.2 Программное обеспечение

- На ПЭВМ должна быть установлена операционная система Windows.
- Установленная программа "Программатор приборов", а также файл с обновленной программой для прибора (файл с расширением *.hex), высылается НПФ «СЕНСОРИКА» по запросу потребителя. Все это можно найти на официальном сайте НПФ «СЕНСОРИКА» http://www.sensorika.org.

ВНИМАНИЕ!!! Не пробуйте использовать НЕХ-файлы разработанные на НПФ «СЕНСОРИКА».

2 Запись программы в прибор

2.1 Подготовка прибора и ПЭВМ

2.1.1 Выключить питание ПЭВМ. Проверить, что тумблер питания прибора выключен, и подключить к сети 220 В ПЭВМ и прибор, не включая

тумблеры их питания. Убедиться, что «корпус» прибора и ПЭВМ надежно соединены с одной и той же шиной заземления через заземляющие провода их сетевых кабелей питания. При отсутствии надежного соединения через шину заземления соединить «корпус» прибора и ПЭВМ между собой отдельным проводником. ПОМНИТЕ, что при перестыковке или случайном пропадании контакта в цепи общего провода кабеля связи ПЭВМ с прибором, когда между «корпусом» ПЭВМ и прибора (и, следовательно, между их общими питания) нет другой связи, кроме нарушившейся в кабеле СОМ- портов, общие питания ПЭВМ и прибора окажутся соединенными только через сигнальные цепи СОМпортов. При включенном питании это может привести к выходу из строя портов прибора или ПЭВМ.

2.1.2 Соединить порты прибора и ПЭВМ кабелем. См п.1.1.

2.2 Запись программы

- 2.2.1 Включить питание ПЭВМ;
- 2.2.2 Загрузить программу "Программатор приборов";
- 2.2.3 В настройках порта установить: скорость "115200", бит данных "8", четность "Нет", стоповые биты "2", управление потоком "Нет".
- 2.2.4 Переведите программу в режим ожидания.
- 2.2.5 Включите прибор. При успешном соединении, программа перейдет в режим "Online".
- 2.2.6 Откройте файл с программой для прибора (файл с расширением *.hex).
- 2.2.7 После нажатия кнопки "Запрограммировать" начнется запись программы в прибор.
- 2.2.8 По окончании записи нажмите кнопку "Разорвать соединение".
- 2.2.9 Закройте программу "Программатор приборов".

Приложение К (справочное)

ОБОЗНАЧЕНИЯ ПРИ ЗАКАЗЕ ПРИБОРА

Ш932.9РС	Э	29.031	32	a	10 шт
1	2	3	4	5	6

- 1 Обозначение прибора: Ш932.9РС
- 2 Специальные требования к исполнению (если нет, то не заполняется)
 Э для поставки на экспорт (кроме стран СНГ);
- 3 Обозначение модификации: 29.031
- 4 Количество релейных входов:
 - **32** 32 входа;
 - **64** 64 входа
- 5 Характеристика входов
 - **а** входы импульсные сигналов 0-1 B / 12-35 B;
 - **б** входы для приема «сухих контактов» (со встроенным источником 24 В)
- 6 Количество заказываемых приборов данного исполнения