

АО «Ярославский электромашиностроительный завод» (АО «ЭЛДИН»)

Руководство по эксплуатации электродвигателей асинхронных трехфазных с короткозамкнутым ротором общепромышленного назначения серий RA, A, AUP, AMTK

ДТ.520205.014 РЭ

1.1 Типовая структура обозначения 1.2 Основные параметры 1.3 Характеристики 1.4 Конструкция двигателя 2 Установка и ввод в эксплуатацию 2.1 Эксплуатационные ограничения 2.2 Установка и ввод в эксплуатацию 2.3 Запуск двигателя 3 Эксплуатация и техническое обслуживание 3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание 4.1 Разборка и сборка двигателя 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение 5.1 Упаковка 5.2 Транспортирование 5.3 Хранение 6 Возможные неисправности и методы устранения 7 Ответственность 8 Реализация		Содерж	сание	
1.2 Основные параметры 1.3 Характеристики 1.4 Конструкция двигателя 2 Установка и ввод в эксплуатацию. 2.1 Эксплуатационые ограничения 2.2 Установка и ввод в эксплуатацию. 2.3 Запуск двигателя. 3 Эксплуатация и техническое обслуживание. 3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя. 4.2 Сервисное обслуживание 5 Улаковка, транспортирование и хранение. 5.1 Улаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение В (обязательное) Сушка двигателя Приложение В (обязательное) Сушка двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ. Приложение В (обязательное) Момент затяжки контактных болтов Приложение Ж (справочное) Пипоразмеры прокладки уплотнительной кабель	1	Описан	ие	
1.2 Основные параметры 1.3 Характеристики 1.4 Конструкция двигателя 2 Установка и ввод в эксплуатацию. 2.1 Эксплуатационые ограничения 2.2 Установка и ввод в эксплуатацию. 2.3 Запуск двигателя. 3 Эксплуатация и техническое обслуживание. 3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя. 4.2 Сервисное обслуживание 5 Улаковка, транспортирование и хранение. 5.1 Улаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение В (обязательное) Сушка двигателя Приложение В (обязательное) Сушка двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ. Приложение В (обязательное) Момент затяжки контактных болтов Приложение Ж (справочное) Пипоразмеры прокладки уплотнительной кабель		1.1	Типовая структура обозначения	
1.4 Конструкция двигателя 2 Установка и ввод в эксплуатацию		1.2		
1.4 Конструкция двигателя 2 Установка и ввод в эксплуатацию		1.3	Характеристики	
2 Установка и ввод в эксплуатацию		1.4		
2.2 Установка и ввод в эксплуатацию. 2.3 Запуск двигателя. 3 Эксплуатация и техническое обслуживание. 3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание. 3.4 Консервация. 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя. 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация. 1 Гриложение А (обязательное) Схемы подключения Приложение В (обязательное) Сушка двигателя Приложение В (обязательное) Наигателя, работающие от ПЧ. Приложение Ж (справочное) Момент затяжки контактных болтов. Приложение Ж (справочное) Момент затяжки резьбовых соединений. Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя	2	Установ		
2.3 Запуск двигателя 3 Эксплуатация и техническое обслуживание 3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение 5.1 Упаковка 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Двигателя Приложение Б (обязательное) Двигатели, работающие от ПЧ. Приложение К (справочное) Момент затяжки контактных болтов Приложение Ж (справочное) Момент затяжки резьбовых соединений Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя		2.1	Эксплуатационные ограничения	
3 Эксплуатация и техническое обслуживание. 3.1 Действия в экстремальных условиях. 3.2 Подшипники и подшипниковые узлы. 3.3 Техническое обслуживание. 3.4 Консервация. 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя. 4.2 Сервисное обслуживание. 5 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Двигателя. Приложение Б (обязательное) Двигатели, работающие от ПЧ. Приложение К (справочное) Момент затяжки контактных болтов. Приложение Ж (справочное) Момент затяжки резьбовых соединений. Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя		2.2	Установка и ввод в эксплуатацию	
3.1 Действия в экстремальных условиях 3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Двигателя Приложение Б (обязательное) Двигатели, работающие от ПЧ. Приложение К (справочное) Момент затяжки контактных болтов Приложение Ж (справочное) Момент затяжки резьбовых соединений Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя		2.3	Запуск двигателя	
3.2 Подшипники и подшипниковые узлы 3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя. 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Двигателя Приложение Б (обязательное) Двигатели, работающие от ПЧ. Приложение К (справочное) Момент затяжки контактных болтов Приложение Ж (справочное) Момент затяжки резьбовых соединений Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабель ного ввода для стандартного варианта двигателя	3	Эксплуа	атация и техническое обслуживание	
3.3 Техническое обслуживание 3.4 Консервация 4 Ремонтные работы и сервисное обслуживание. 4.1 Разборка и сборка двигателя 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ. Приложение К (справочное) Момент затяжки контактных болтов. Приложение Ж (справочное) Момент затяжки резьбовых соединений. Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя		3.1	Действия в экстремальных условиях	
3.4 Консервация		3.2		
4 Ремонтные работы и сервисное обслуживание		3.3	Техническое обслуживание	
4.1 Разборка и сборка двигателя 4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Сушка двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ. Приложение Г (справочное) Момент затяжки контактных болтов Приложение Ж (справочное) Момент затяжки резьбовых соединений Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя		3.4	Консервация	
4.2 Сервисное обслуживание 5 Упаковка, транспортирование и хранение	4	Ремонти		
 Упаковка, транспортирование и хранение. 5.1 Упаковка. 5.2 Транспортирование. 5.3 Хранение. 6 Возможные неисправности и методы устранения. 7 Ответственность. 8 Реализация. 9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Сушка двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ. Приложение Г (справочное) Момент затяжки контактных болтов. Приложение Ж (справочное) Момент затяжки резьбовых соединений. Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабель ного ввода для стандартного варианта двигателя 		4.1	Разборка и сборка двигателя	
5.1 Упаковка		4.2	Сервисное обслуживание	
5.2 Транспортирование	5	Упакові	ка, транспортирование и хранение	
5.3 Хранение 6 Возможные неисправности и методы устранения		5.1	Упаковка	
6 Возможные неисправности и методы устранения		5.2	Транспортирование	
7 Ответственность		5.3	Хранение	
8 Реализация	6	Возмож	ные неисправности и методы устранения	
9 Утилизация Приложение А (обязательное) Схемы подключения Приложение Б (обязательное) Сушка двигателя Приложение В (обязательное) Двигатели, работающие от ПЧ Приложение Г (справочное) Момент затяжки контактных болтов Приложение Ж (справочное) Момент затяжки резьбовых соединений Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабель ного ввода для стандартного варианта двигателя	7	Ответст	венность	
Приложение А (обязательное) Схемы подключения	8	Реализа	ция	
Приложение Б (обязательное) Сушка двигателя	9	Утилиза	ация	
Приложение В (обязательное) Двигатели, работающие от ПЧ	Пр	иложени	е А (обязательное) Схемы подключения	
Приложение Г (справочное) Момент затяжки контактных болтов	Пр	иложени	е Б (обязательное) Сушка двигателя	
Приложение Ж (справочное) Момент затяжки резьбовых соединений	Пр	иложени	е В (обязательное) Двигатели, работающие от ПЧ	
Приложение Д (справочное) Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя	Пр	иложени	е Г (справочное) Момент затяжки контактных болтов	
ного ввода для стандартного варианта двигателя	Пр	иложени	е Ж (справочное) Момент затяжки резьбовых соединений	
	_			

Руководство по эксплуатации распространяется на двигатели асинхронные трехфазные с короткозамкнутым ротором низкого напряжения серий RA, A, AИР, AMTK (далее - двигатели) общего применения в сетях с напряжением до 690 В.

Двигатели изготовлены в соответствии с требованиями норм ГОСТ 31606, ГОСТ IEC 60034-1-14, МЭК 60034.

Руководство не распространяется на двигатели, устанавливаемые на средствах наземного, морского, воздушного транспорта и взрывозащищенные двигатели.

Все работы по транспортированию, хранению, подключению, вводу в эксплуатацию, обслуживанию и ремонту должны выполняться квалифицированными специалистами с соблюдением установленных норм и требований настоящей инструкции. Несоблюдение требований инструкции, доработка и разборка двигателей без согласования с изготовителем может привести к расторжению гарантии.

1 ОПИСАНИЕ

1.1 Типовая структура обозначения

Поз.		1	2	3	4	5	6	7	8	9	10	11	12	13
Обозначение	R	Α	С	1	3	2	S	Α	4	И	F	Б	У	2

- 1 RA условное обозначение серии с привязкой мощностей к установочным размерам по DIN EN 50347
 - А, АИР условное обозначение серии с привязкой мощностей к установочным размерам по Γ OCT 31606
 - АМТК условное обозначение серии для привода кранов
- 2 С с повышенным скольжением
- 3-5 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 280, 315, 355, 400 высота оси вращения двигателя, мм
 - 6 S, M, L установочный размер по длине станины
 - 7 A, B, C, D длина сердечника (может отсутствовать)
 - 8 2, 4, 6, 8, 10, 12— число полюсов (для односкоростных двигателей) или 4/2, 6/4/2, 12/8/6/4 - соотношение чисел полюсов (для многоскоростных двигателей)
 - 9 И с инкрементальным датчиком (энкодором)
- 10 Отсутствует для двигателей, работающих от сети,
 - F для двигателей, работающих от преобразователя частоты повышенной надежности
- 11 Б с термозащитой обмотки
- 12 У. Т. УХЛ- климатическое исполнение
- 13 1; 2; 3; 4; 5 категория размещения

Дополнительные опции и характеристики, не входящие в типовую структуру обозначения, сообщаются отдельно.

1.2 Основные параметры

- 1.2.1 Номинальная мощность указана на фирменной табличке.
- 1.2.2 Режим работы «S» по ГОСТ IEC 60034-1 указан на фирменной табличке.
- 1.2.3 Основные параметры КПД, Соs ф, класс энергоэффективности по МЭК 60034-30 или по ГОСТ Р 54413 указаны на фирменной табличке.

Допустимые отклонения по ГОСТ IEC 60034-1.

1.2.4 Пусковые характеристики в соответствии с ГОСТ Р МЭК 60034-12:

Мпуск/Мн; Ммакс/Мн; Ммин/Мн; Іпуск/Ін указаны в технических условиях.

Допустимые отклонения по ГОСТ IEC 60034-1.

1.2.5 Двигатели предназначены для эксплуатации от сети переменного тока напряжением до 690 В. Номинальное напряжение и схема подключения указаны на фирменной табличке.

Допуск по напряжению по ГОСТ IEC 60034-1 зона «А» ± 5 %.

Длительная эксплуатация в зоне «Б» $\pm 10\%$ (вне зоны «А») по ГОСТ IEC 60034-1 недопустима. Для длительной эксплуатации с допуском по напряжению до $\pm 10\%$ необходимы специальные меры или специальная конструкция. Проконсультируйтесь с производителем.

1.2.6 Номинальная частота сети указана на фирменной табличке.

Допуск по частоте по ГОСТ IEC 60034-1 зона «A» ± 2 %.

Длительная эксплуатация в зоне «Б» (вне зоны «А») по ГОСТ IEC 60034-1 недопустима. Для длительной эксплуатации с допуском по частоте от минус 5% до плюс 3% необходимы специальные меры или нужна специальная конструкция. Проконсультируйтесь с производителем.

1.2.7 Исполнение по способу монтажа «IMXXXX» по ГОСТ 2479 или МЭК 60034-7 указано на фирменной табличке.

Установочно-присоединительные размеры по ГОСТ 31606. Габаритные и установочноприсоединительные размеры указаны в документации производителя и высылаются по запросу.

Предельные отклонения на установочно-присоединительные размеры по ГОСТ 8592.

1.2.8 Степень защиты двигателей от внешних воздействий IP54, IP55 или другая (согласно заказу), степень защиты вентилятора IP20 по ГОСТ IEC 60034-5. Степень защиты двигателя указана на фирменной табличке.

Для двигателей климатического исполнения У1, УХЛ1 заказчик должен обеспечить непопадание прямых осадков на вал для исключения обледенения в холодное время года.

- 1.2.9 Способ охлаждения по ГОСТ Р МЭК 60034-6:
- IC411 поверхностное охлаждение собственным вентилятором (самоохлаждение):
- ІС416 охлаждение встроенным независимым вентилятором.
- 1.2.10 Максимально допустимое значение среднего уровня звукового давления на холостом ходу при питании от сети 50Γ ц по ГОСТ Р 53148 (МЭК 60034-9) указывается в паспорте на изделие.

При питании от сети 60 Γ ц на холостом ходу значения увеличиваются для 2-х полюсных двигателей на 5 дБ(A), для 4-,6-,8-,10-;12-и полюсных на 3дБ(A).

При работе двигателей с номинальной нагрузкой значения повышаются на величину, указанную в таблице.

Таблица увеличения уровня звукового давления под нагрузкой

Высота оси	Увеличение уровня звукового давления под нагрузкой, дБ(А)							
вращения Н, мм	2-х полюсный	4-х полюсный	6-и полюсный	≥8-и полюсный				
$90 \le H \le 160$	2	5	7	8				
$180 \le H \le 200$	2	4	6	7				
$225 \le H \le 280$	2	3	6	7				
H = 315	2	3	5	6				
H >315	2	2	4	5				

На частоте 50 Γ ц при работе от преобразователей частоты уровень звукового давления двигателей может повышаться на величину от 1 до 15 д Γ (A) по сравнению с работой от сети (указанной в паспорте).

При работе двигателей на скоростях выше скорости, соответствующей частоте 50 Гц для двигателей со способом охлаждения IC411, увеличение частоты на каждые 10 Гц приводит к повышению уровню вентиляционного шума в среднем на 3 дБ(A). Реальные значения уровня шума в каждом конкретном случае могут быть сообщены по запросу.

1.2.11 Максимально допустимое среднеквадратичное значение вибрации двигателя в режиме холостого хода без приводного механизма на валу по ГОСТ МЭК 60034-14 указано в таблице.

Балансировка ротора с полушпонкой на выходном конце вала.

Таблица значений вибрации

		Высота о	Высота оси вращения									
Катего- рия машин	Способ крепле- ния	56 ≤ H ≤ 132			132 < H ≤	280		H > 280				
		Вибро	Вибро	Вибро	Вибро	Виброс-	Вибро	Вибро	Виброс-	Вибро		
		смеще-	скорость	ускоре-	смеще-	корость	ускоре-	смеще-	корость	ускоре-		
машин		ние		ние	ние		ние	ние		ние		
		MKM	мм/с	M/c^2	MKM	мм/с	M/c^2	MKM	мм/с	M/c^2		
٨	Упругое	25	1.6	2.5	35	2.2	3.5	45	2.8	4.4		
A	Жесткое	21	1.3	2.0	29	1.8	2.8	37	2.3	3.6		
В	Упругое	11	0.7	1.1	18	1.1	1.7	29	1.8	2.8		
ь	Жесткое	-	-	-	14	0.9	1.4	24	1.5	2.4		

Категория «А» - двигатели без специального требования вибрации. Стандартное исполнение.

Категория «В» - двигатели со специальным требованием к вибрации. Жесткого крепления не применяют для двигателей с высотой оси вращения менее 132 мм.

Граничные частоты для перехода от виброскорости к виброперемещению и от виброскорости к виброускорению – 10 и 250 Гц соответственно.

Примечания

- 1. Производитель и покупатель должны согласовывать точность измерения в пределах ±10%.
- 2. Максимально допустимое среднеквадратичное значение виброскорости на холостом ходу для упругого крепления указывается в паспорте на двигатель.
- 3. Измерение вибрации для жесткого крепления производить при соблюдении требований пункта 6.3 ГОСТ Р МЭК 60034-14-2014.
- 4. Измерение вибрации двигателя смонтированного в составе установки производить с учетом требований ГОСТ ИСО 10816-1; ГОСТ ИСО 10816-1-2; ГОСТ ИСО 10816-1-3; ГОСТ ИСО 10816-1-4.
- Измерение вибрации двигателей, работающих от преобразователя частоты необходимо производить с включенным преобразователем во всем диапазоне регулирования или на частоте с большей вибрацией.

1.3 Характеристики

1.3.1 Маркировка

Номинальные технические данные двигателя указаны на фирменной табличке:

- мощность, кВт;
- напряжение, В;
- условное обозначение рода тока;
- частота сети, Гц;
- ток, А;
- частота вращения, об/мин;
- коэффициент мощности (cos φ);
- кпд, %;

- схема соединения фаз обмотки;
- степень зашиты:
- класс нагревостойкости изоляции;
- режим работы;
- масса двигателя, кг.

Для двигателей с питанием от преобразователя частоты дополнительно указывается диапазон оборотов, в котором двигатель должен работать и рабочие пределы крутящего момента.

1.3.2 Условия эксплуатации обусловлены климатическими факторами окружающей среды.

Климатические факторы по ГОСТ 15150 (температура окружающей среды, влажность воздуха) в зависимости от климатического исполнения указаны в таблице.

Таблица климатических факторов

Клима тическое	Категория	Рабочая температура окружающего возду	Верхнее значение относительной	
исполнение	размещения	верхнее	нижнее	влажности воздуха
У	1	плюс 45°С	минус 45°С	100% при 25°С
У	2	плюс 40°С	минус 45°С	100% при 25°С
У	3	плюс 40°С	минус 45°С	98% при 25°C
T	2; 5	плюс 50°С	минус 10°С	100% при 35°C
УХЛ	1	плюс 45°С	минус 60°С	100% при 25°С
УХЛ	2	плюс 40°С	минус 60°С	100% при 25°С

Климатическое исполнение указано на фирменной табличке в обозначении двигателя. Категория размещения:

- 1 на открытом воздухе;
- 2 под навесом при отсутствии прямого воздействия солнечного излучения и атмосферных осадков:
 - 3 в закрытых помещениях без искусственного регулирования климатических условий;
- 1.3.3 Условия эксплуатации обусловлены внешними механическими факторами. Группа механического исполнения двигателей М1 по ГОСТ 17516.1. Двигатели сейсмостойки при воздействии землетрясений по шкале MSK-64 интенсивностью:
 - 9 баллов, при уровне установки над нулевой отметкой до 10 м,
 - 8 баллов, при уровне установки над нулевой отметкой св. 10 до 25 м,
 - 7 баллов, при уровне установки над нулевой отметкой св. 25 до 70 м.

1.4 Конструкция двигателя

Типовая конструкция двигателя представлена на рисунке 1.

В зависимости от типоразмера элементы конструкции могут отличаться от типовой.

1.4.1 Корпус двигателя

Корпус статора (станина), подшипниковые щиты в зависимости от типа двигателя выполнены из серого чугуна или алюминиевого сплава. На станине имеются ребра охлаждения.

Литые заодно с корпусом чугунные лапы обеспечивают высокую жесткость монтажа и минимальные вибрации.

Кожух вентилятора изготовлен из тонколистовой стали.

Более точная информация на конкретный тип двигателя сообщается по запросу.

1.4.2 Сердечник статора и ротора

Сердечник статора и ротора изготовлены из изолированной электротехнической стали толщиной 0,5 мм.

1.4.3 Обмотка статора

Класс нагревостойкости обмотки статора указан на фирменной табличке.

Обмотка выполнена из эмалированного медного провода круглого сечения.

Обмотка статора дополнительно пропитана в электротехническом лаке.

Выводные концы обмотки статора в коробке выводов выполнены из провода марки ПВКВ с кремнеорганической изоляцией.

1.4.4 Ротор

Обмотка ротора короткозамкнутая (по типу беличьей клетки), выполнена из алюминия или алюминиевого сплава (в зависимости от типа двигателя) методом литья.

В зависимости от типа двигателя и его назначения обмотка ротора может быть изготовлена из медных стержней методом литья или сварки (пайки).

Вал двигателя изготовлен из конструкционной стали марки 45.

1.4.5 Корпус и крышка коробки выводов в зависимости от типа двигателя изготовлены из алюминиевого сплава или серого чугуна.

В коробке выводов установлена клеммная панель с силовыми контактами для подключения питающего кабеля и дополнительными контактами для подключения кабелей управления.

В коробке выводов расположены схемы подключения.

Силовые кабели и кабели управления вводятся через кабельные вводы.

Более точная информация о конструкции коробки выводов для конкретных типов указана в каталоге производителя. Чертеж коробки выводов может быть предоставлен по запросу.

1.4.6 Подшипники и подшипниковые опоры

Конструкция подшипниковых узлов указана в каталоге производителя.

В стандартном исполнении для двигателей с высотой оси вращения применены подшипники:

- A(RA)11 A(RA)180 закрытые подшипники с металлическими уплотнениями и заложенной смазкой заводом изготовителем подшипников на весь срок эксплуатации;
- A(RA)200 A225, RA250 открытые подшипники с заложенной смазкой заводом изготовителем двигателей;
- A250(RA280) A(RA)400 открытые подшипники с пополнением смазки в процессе эксплуатации.

В зависимости от условий эксплуатации, от требований заказа в двигателях с высотой оси вращения A(RA)132 - A225(RA250) могут быть установлены открытые подшипники с пополнением смазки в процессе эксплуатации.

Для такой конструкции на подшипниковых щитах установлены масленки (ниппеля).

Типоразмеры подшипников для конкретных двигателей стандартного исполнения указаны в каталоге производителя. Для специальных исполнений сообщаются по запросу.

Дополнительная информация указана в следующих пунктах:

- 2.2.1 Контроль перед установкой Блокировка подшипников
- 2.2.4 Пробный пуск
- 3.2 Подшипники и подшипниковые узлы

1.4.7 Охлаждение

Для наружного охлаждения IC411 в двигателе применен вентилятор, насаженный на вал. Вентилятор, в зависимости от назначения и типа двигателя изготовлен из пластика или алюминиевого сплава. Охлаждение происходит вследствие всасывания воздуха через отверстия в кожухе вентилятора и прохождении его через ребра охлаждения на корпусе двигателя. Для данного способа охлаждения врашение вала двигателя может быть реверсивным.

Для наружного охлаждения IC416 используется узел независимой вентиляции, состоящий из отдельного вентилятора и встроенного в него двигателя. Направление вращения узла независимой вентиляции указано на кожухе вентилятора.

Подробная информация о конструкции узла независимой вентиляции приведена в каталоге производителя, в паспорте на узел независимой вентиляции или направляется по запросу.

1.4.8 Встраиваемые элементы

Их наличие в двигателе определяется условием контракта на поставку.

1.4.8.1 Контроль температуры обмотки статора

РТС терморезисторы с положительным температурным коэффициентом

Для защиты двигателей в аварийных режимах от перегрева обмотки статора в лобовые части обмотки могут быть встроены, по одному в каждую фазу, и соединены последовательно терморезисторы типа РТС с характеристиками по DIN 44082.

Характеристики одного датчика	Класс изоля	Класс изоляции обмотки			
для контроля состояния двигателя	F	Н			
- номинальная температура датчика в цепи «предупреждения», °C	130	150			
- номинальная температура датчика в цепи «отключения», °C	150	170			
- сопротивление в холодном состоянии, Ом 1)	≤ 250	≤ 250			
- сопротивление в цепи «предупреждения» аварийный сигнал, Ом 1)	≥ 1330	≥ 1330			
- сопротивление отключения двигателя в цепи «отключения», Ом $^{1)}$	≥ 1330	≥ 1330			
- измерительное напряжение, В 1)	≤ 2,5	≤ 2,5			

¹⁾ Значения сопротивления и напряжения для цепи увеличивается на количество последовательно соединенных датчиков.

Количество последовательно соединенных датчиков указано в схеме, расположенной в коробке выводов. Типовая схема указана на рисунках A.2.1 и A.2.2 приложения A.

Для подключения цепей терморезисторов выводные концы выведены в коробку выводов и подсоединены к клеммам.

Маркировка выводных концов по МЭК 60034-8:

- «1ТР1 и 1ТР2» для цепи «отключения»:
- «2ТР1 и 2ТР2» для цепи «предупреждения».

Pt100 термопреобразователи сопротивления

Для защиты двигателей в аварийных режимах от перегрева обмотки статора в лобовые части обмотки могут быть встроены термопреобразователи сопротивления Pt100 с двухпроводной или трехпроводной схемой с номинальной статической характеристикой α =0,00385°C-1 по Γ OCT 6651.

Количество установленных датчиков указано в схеме, расположенной в коробке выводов. Типовая схема указана на рисунках A.3.1 и A.3.2 приложения A.

Для подключения цепей термопреобразователей выводные концы выведены в коробку выводов и подсоединены к клеммам.

Маркировка выводных концов по МЭК 60034-8:

- «1R1-1R2», «2R1-2R2» для 2-х проводной схемы цепь «отключения»
- 2-а датчика в 2-х фазах;
- «4R1-4R2», «5R1-5R2» для 2-х проводной схемы цепь «предупреждения»
- 2-а датчика в 2-х фазах;
- «1R1-1R2», «2R1-2R2», «3R1-3R2» для 2-х проводной схемы цепь «отключения»
- 3-и датчика в 3-х фазах;
- «4R1-4R2», «5R1-5R2», «6R1-6R2» для 2-х проводной схемы цепь «предупреждения»
- 3-и датчика в 3-х фазах;
- «1R1-(1R2:1R2)», «2R1- (2R2: 2R2)» для 3-х проводной схемы цепь «отключения»
- 2-а датчика в 2-х фазах:
- «4R1- (4R2: 4R2)», «5R1-(5R2:5R2)» для 3-х проводной схемы цепь «предупреждения»

2-а датчика 2-х фазах;

- «1R1-(1R2:1R2)», «2R1- (2R2: 2R2)», «3R1-(3R2:3R2)» для 3-х проводной схемы цепь «отключения» 3-и датчика в 3-х фазах;
- «4R1-(4R2:4R2)», «5R1-(5R2:5R2)», «6R1-(6R2:6R2)» для 3-х проводной схемы цепь «предупреждения» 3-и датчика в 3-х фазах.

Характеристики одного датчика	Класс изоляции обмотки			
для контроля состояния двигателя	F	Н		
- температура предупреждения, аварийный сигнал, °C	135	160		
- температура отключения, °C	150	175		

Измерение сопротивления термопреобразователей проводится измерительным током $\leq IмA$ Сопротивление цепи термопреобразователей в холодном состоянии двигателя должно соответствовать температуре окружающей среды по таблице номинальной статической характеристики ГОСТ 6651

Биметаллические термовыключатели

Для защиты двигателей в аварийных режимах от перегрева обмотки статора в лобовые части обмотки могут быть встроены, по одному в каждую фазу, и соединены последовательно нормально замкнутые биметаллические термовыключатели типа «S01» или «S06» фирмы «Thermik»

Характеристики одного датчика	Класс изоляции обмотки				
для контроля состояния двигателя		F	Н		
температура срабатывания датчика в цепи «предупреждения», аварийный с	130	150			
температура срабатывания датчика в цепи «отключения», °C					
ток при $AC \le 250B^{-1}$, A	$\cos f = 1$	≤ 2,5	≤ 2,5		
ток при $AC \le 250B^{1}$, A	$\cos f = 0.6$	≤ 1,6	≤ 1,6		
ток при $DC \le 12B^{1}$, A	ток при DC ≤ 12B¹¹, A для S01				
ток при DC \leq 24B ¹ , A	≤ 2,5	≤ 2,5			
сопротивление контакта, Ом		≤ 0,05	≤0,05		

¹⁾ Значения измерительного напряжения для цепи увеличивается на количество последовательно соединенных датчиков

вательно соединенных датчиков Примечание. *Ограничение по токам датчиков в иепи управления для снижения самонагрева.*

Количество последовательно соединенных датчиков указано в схеме, расположенной в коробке выводов. Типовая схема указана на рисунках А.4.1 и А.4.2 приложения А.

Для подключения цепей термовыключателей выводные концы выведены в коробку выводов и подсоединены к клеммам.

Маркировка выводных концов по МЭК 60034-8:

- «1ТВ1 и 1ТВ2» цепь «отключения»;
- «2ТВ1 и 2ТВ2» цепь «предупреждения».
- 1.4.8.2 Обогрев обмотки

Двигатели могут быть укомплектованы ленточным антиконденсатным нагревателем, который закреплен на лобовой части обмотки статора. Нагреватель рассчитан на питание от сети переменного тока напряжением 210-250 В частотой 50 Гц и мощностью:

- 12 Вт	для двигателей габарита 71, 80, 90
- 25Вт	для двигателей габарита 100, 132
- 50 Вт	для двигателей габарита 160, 180, 200, 225
- 100 Вт	для двигателей габарита 250, 280, 315
- 2х100 Вт	для двигателей габарита 355, 400

Схема подключения расположена в коробке выводов. Типовая схема указана на рисунке А.6 приложения А.

Для подключения цепей термовыключателей выводные концы с маркировкой HE1 и HE2 выведены в коробку выводов и подсоединены к клеммам.

Напряжение на нагреватель должно подаваться во время простоя двигателя в условиях повышенной влажности и температурах ниже минус 20° C обязательно, при температуре ниже 0° C рекомендуемо.

ПРЕДОСТЕРЕЖЕНИЕ: НЕ ДОПУСКАЕТСЯ ПОДКЛЮЧЕНИЕ НАГРЕВАТЕЛЕЙ ВО ВРЕМЯ РАБОТЫ ДВИГАТЕЛЯ!

- 1.4.8.3 Контроль температуры подшипников
- а) Для контроля температуры подшипников двигатели могут быть укомплектованы датчиками. Возможные варианты датчиков:
- термопреобразователь сопротивления с номинальной статической характеристикой Pt100 по ГОСТ 6651 с температурным коэффициентом α=0,00385°C-1, трехпроводная схема);
- термопреобразователь сопротивления с номинальной статической характеристикой 50M по ГОСТ 6651 с температурным коэффициентом α =0,00428°C-1 по ГОСТ 6651, трехпроводная схема);
- преобразователь термоэлектрический (термопара) типа ТХА с номинальной статической характеристикой ХА(К) по ГОСТ Р 8.585.
- преобразователь термоэлектрический (термопара) типа ТХК с номинальной статической характеристикой ХК(L) по ГОСТ Р 8.585.

Подключение кабелей управления производить согласно схеме, расположенной в коробке выводов двигателя:

- типовая схема для термопреобразователей сопротивления Pt100 указана на рисунке A.5.1 приложения A;
 - маркировка выводных концов по МЭК 60034-8
 - «7R1 (7R2:7R2)» сторона D-end;
 - «8R1 (8R2:8R2)» сторона N-end.
- типовая схема подключения преобразователей термоэлектрических типа ТХА или ТХК указана на рисунке A.5.2 приложения A;
 - маркировка выводных концов по МЭК 60034-8
 - «9R1 9R2» сторона D-end;
 - «10R1 10R2» сторона N-end.

Подключение кабелей управления производить в коробке приводного оборудования или в собственной коробке датчика.

Схема подключения указана в паспорте термопреобразователя.

Выбор варианта установки датчика определяется при заказе.

б) Для контроля температуры подшипников двигатели могут быть поставлены без датчика с отверстиями в подшипниковых щитах.

Выбор варианта исполнения отверстий определяется при заказе.

Отключение двигателя по предельной температуре подшипника, указанной в пункте 3.2.

Аварийный сигнал на 10-15°C ниже предельно допустимой температуры.

Измерение сопротивления термопреобразователей проводится измерительным током ≤ 1 мA.

1.4.8.4 Контроль вибрации

В двигателях могут быть предусмотрены отверстия в подшипниковых щитах для установки датчика измерения вибрации SPM42011-R в радиальном и осевом направлении.

2 УСТАНОВКА И ВВОД В ЭКСПЛУАТАЦИЮ

2.1 Эксплуатационные ограничения

2.1.1 Режим работы

Эксплуатация двигателей должна производиться в режиме работы S1 по ГОСТ IEC 60034-1 в соответствии указанием на фирменной табличке. Эксплуатация в других режимах по согласованию с производителем.

2.1.2 Напряжение и частота сети.

Ограничения по напряжению и частоте сети указаны в пунктах 1.2.5 и 1.2.6

Ограничения по напряжению при работе двигателей от преобразователя частоты указаны в приложении В.

2.1.3 Монтаж

Установка двигателя только в соответствии с указанным на фирменной табличке монтажным исполнением. Для другого использования и установки проконсультируйтесь с производителем см. пункт 1.2.7.

2.1.4 Внешние факторы вода и пыль

Установка и эксплуатация двигателей в соответствии со степенью защиты указанной на фирменной табличке см. пункт 1.2.8.

Значения запыленности для степеней зашиты IP54 <100г/м² и для IP55<200г/м².

2.1.5 Охлаждение

Способ охлаждения в соответствии с пунктами 1.2.9 и 1.4.7.

Вокруг двигателя не должны находиться устройства или поверхности оказывающие влияния на дополнительный нагрев. Максимальная и минимальная температура окружающей среды должна, находиться в пределах указанного на фирменной табличке климатического исполнения см. пункт 1.3.2.

Расстояние от торца кожуха вентилятора до ближайшего препятствия должно быть $\geq d/4$, где d – диаметр входного отверстия в кожух.

Эксплуатация двигателей без вентилятора и кожуха вентилятора не допускается.

Для конструкции двигателей без вентилятора работающих в составе привода осевых вентиляторов и находящихся в потоке воздуха приводного вентилятора, минимальную скорость потока воздуха согласовать с производителем.

2.1.6 Вибрация и внешние механические факторы

Требование к внешним воздействующим механическим факторам от фундаментов (мест установки и монтажа) в соответствии с пунктом 1.3.3.

Требование к вибрации двигателя отдельно и в составе приводного механизма в соответствии с пунктом 1.2.11

2.1.7 Температура окружающей среды и климатические факторы

Эксплуатация двигателей допустима только для климатического исполнения указанного в типе двигателя на фирменной табличке см. пункт 1.3.2.

Независимо от указанного в типе двигателя климатического исполнения **номинальная** мощность двигателей, указанная на фирменной табличке, регламентирована для эксплуатации на высоте до 1000 м над уровнем моря и верхнем значении температуры окружающей среды не более плюс 40°C, если иное значение не указано на фирменной табличке двигателя.

При эксплуатации двигателя на высоте свыше 1000 м и верхнем значении температуры окружающей среды более плюс 40°С, нагрузка на двигатель должна быть снижена в соответствии с данными приведенными в таблицах снижения мощности в зависимости от температуры окружающей среды и от высоты над уровнем моря.

При одновременном воздействии температуры окружающей среды на высоте свыше 1000 м допустимая нагрузка рассчитывается по формуле:

 $P_{\Pi} = P_{H} \times K_{T} \times K_{B}$. где:

Рд - допустимая мощность

Рн - номинальная мощность,

Кт - коэффициент изменения мощности в зависимости от температуры

Кв - Коэффициент изменения допустимой мощности в зависимости от высоты над уровнем моря

Таблица снижения мощности в зависимости от температуры окружающей среды

Верхнее значение температуры окружающей среды	плюс 40°С	плюс 45°C	плюс50°С	плюс 55°C	плюс 60°С
Коэффициент изменения до- пустимой мощности в зависимости от температуры, % (Кт)	1,00	0,95	0,90	0,85	0,80

Таблица снижения мощности в зависимости от высоты над уровнем моря

Высота над уровнем моря, м	1000	1500	2000	2400	3000	3500	4000	4300
Коэффициент изменения допустимой мощности в зависимости от высоты над уровнем моря, % (Кв)	1,00	0,98	0,95	0,93	0,88	0,84	0,80	0,74

Значение мощности нагрузки на валу двигателя можно определить по замеренному значению тока двигателя. Изменение мощности нагрузки в пределах $\pm 20\%$ от номинальной (указанной на табличке) прямо пропорционально изменению тока (пренебрегая нелинейностью характеристик двигателя).

 $P_{\text{нагрузки}} = (I_{\text{измеренное}}/I_{\text{ном}}) \times P_{2\text{ном}}$

Более точное соотношение зависимости мощности нагрузки от тока запрашивайте у производителя.

Возможность работы двигателя при температурах \ge плюс 40°C без снижения мощности указанных в таблице запрашивайте у производителя.

2.1.8 Перегрузка

При номинальном значении напряжения и частоты питающей сети допускается следующая перегрузка:

- 1,5 номинального тока в течении 2 мин.
- 1.6 номинального момента в течении 15 с.

Возможность работы с длительной перегрузкой по мощности согласовывается с производителем.

2.1.9 Подшипники

Осевая и радиальная нагрузка на подшипники от приводного механизма не должна превышать значения, указанные в каталоге производителя.

Срок сохраняемости смазки в подшипниках и в подшипниковых узлах, максимально допустимая температура подшипников, срок службы в зависимости от температуры и обслуживание подшипников указаны в разделе 3.2.

2.1.10 Максимальное количество запусков

Двигатели допускают два последовательных пуска (с остановкой между пусками) из холодного состояния, с интервалом между пусками 3 - 5 мин или один пуск из горячего состояния через 1 ч после остановки агрегата.

При этом момент сопротивления нагрузки при пуске пропорционален квадрату частоты вращения и равен номинальному моменту при номинальной частоте вращения, а внешний момент инерции, J, $\kappa r/m^2$ не должен превышать рассчитанного по формуле

$$J = 0.04 \times P^{0.9} \times p^{2.5}$$
, где

Р – номинальная мощность двигателя, кВт;

р – число пар полюсов

наружная; 7, 27 – подшипник; 8, 28– войлочное уплотнение;9, 13 – крышка подшипника внутренняя; 10, 16 - щит подшипниковый; 30 - болт М10; 31 - коробка выводов; 32 – прокладка уплотнительная; 33-наконечник; 34 - болт М10; 35 - болт М20; 36 - винт М10; 11, 14 – масленка; 12 – статор; 15 – кожух; 18 – винт М10; 19, 21, 23, 25 – кольцо пружинное упорное; 20 – вентилятор; 29 – ротор; 1 - болт-пробка; 2 - колпачок; 3, 22 - шпонка; 4, 24 - манжета; 5, 26 - кольцо маслоотбрасывающее; 6, 17 - крышка подшипник 37 - прокладка уплотнительная; 38 - прокладка уплотнительная

Рисунок 1 - Типовая конструкция

ДТ.520205.014 РЭ 13 30.04.2020

2.1.11 Показатели надежности

30000 ч, не менее - средний ресурс двигателей до капитального ремонта

23000 ч, не менее - средняя наработка двигателя на отказ

2.1.12 Гарантийные обязательства указаны в паспорте на изделие

2.2 Установка и ввод в эксплуатацию

2.2.1 Контроль перед установкой

Проверить целостность заводской упаковки на наличие повреждений.

Распаковать двигатель. Виды упаковки в зависимости от требования заказа указаны в разделе 5.

Проверить двигатель на наличие механических повреждений и повреждений лакокрасочных покрытий. При обнаружении повреждений свяжитесь с продавцом или с производителем.

Для строповки двигателя используйте специальные грузовые приспособления, предварительно проверив надежность их резьбового соединения. Подвешивание за другие места недопустимо. Грузовые приспособления рассчитаны только на собственную массу двигателя.

У двигателей габарита Н≤100 грузовые приспособления отсутствуют

Проверить наличие паспорта, инструкций, данные на фирменной табличке на соответствие требованиям заказа и условиям эксплуатации.

При всех видах транспортировки двигателя к месту монтажа в упаковке или без неё не допускается резких толчков, ударов и повреждений лакокрасочных покрытий любыми инструментами

Блокировка подшипников

У двигателей с роликовыми подшипниками на момент транспортировки вал двигателя, воизбежание повреждений подшипника, блокируется специальными винтами, обозначенными красной краской и информационными табличками, или с помощью транспортных креплений, установленных на конец вала. Перед проверкой вращения вала разблокировать вал двигателя. Фиксирующие винты должны быть вывернуты на 5-10мм и зафиксированы контргайкой. Транспортные приспособления удалить с вала двигателя.

Проверить от руки свободное вращение вала двигателя. При вращении не должно быть стуков, задеваний, треска и шума подшипников.

Для степени защиты IP55 проверить наличие уплотнительных манжет на валу двигателя, их целостность и правильную установку. Конструкция манжет для тех или иных условий эксплуатации определена производителем.

Для последующих транспортировок вал должен быть заблокирован.

2.2.2 Расконсервация

Все присоединительные поверхности двигателя: выходной конец вала, присоединительные поверхности фланцевого щита, опорная поверхность лап очистить от консервационной смазки и промыть уайт-спиритом или бензином. Наружную поверхность двигателя очистить от пыли.

2.2.3 Сопротивление изоляции и целостность схем

Проверить сопротивление изоляции обмоток, встроенных в обмотку статора элементов и целостность схем перед:

- любым первым подключением двигателя к питающему напряжению на холостом ходу без приводного механизма с целью проверки работоспособности и дефектов;
 - монтажом с приводным механизмом.

Сопротивление изоляции

В практически холодном состоянии сопротивление изоляции обмоток статора двигателя и обмоток встроенных элементов (термозащиты, ленточных нагревателей) относительно корпуса двигателя, между фазами обмотки двигателя и между обмотками встроенных элементов должно быть не ниже 10 МОм.

Если сопротивление ниже, то двигатель следует просушить (см. Приложение Б).

Измерение сопротивления изоляции следует производить при номинальном напряжении обмотки до 500 В включительно - мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В - мегаомметром на 1000 В.

Сушка двигателя см. Приложение Б.

При наличии в коробке выводов силикагеля, его удалить.

Целостность схем

Измерение сопротивления обмоток производить омметром с измерением по постоянному току классом точности ≤ 0.5, с диапазоном измерения от 1 мОм до 100 Ом. Значение сопротивления регламентируется производителем и при необходимости сообщаются по запросу. Схема на рисунках A1.1 и A1.2 приложения A.

Измерение сопротивления цепи РТС терморезисторов производить омметром при подаче напряжения постоянного тока не более 2,5 В на один датчик. Характеристики терморезисторов указаны в пункте 1.4.8.1.

ВНИМАНИЕ! ИЗМЕРЯТЬ СОПРОТИВЛЕНИЯ МЕГАОММЕТРОМ НЕ ДОПУСКАЕТСЯ.

Измерение сопротивления цепи термометров сопротивления Pt100 производить омметром с измерением по постоянному току ≤ 1 мА классом точности $\leq 0,5$. Характеристики термометров сопротивления Pt100 указаны в пункте 1.4.8.1.

Измерение сопротивления цепи нормально замкнутых биметаллических термовыключателей производить омметром классом точности ≤ 5 . Характеристики терморезисторов см. пункт 1.4.8.1.

Измерение сопротивления цени ленточного нагревателя производить омметром с измерением по постоянному току классом точности ≤ 0.5 с диапазоном измерения от 0.1 до 10 кОм. Значения сопротивления

 $R=(220)^2/P_{Har}$, где

 $P_{\text{наг}}$ - мощность нагревателя (см. пункт 1.4.8.2).

2.2.4 Пробный пуск

Для проверки работоспособности двигателя допускается производить пробный пуск на холостом ходу, без монтажа на фундамент, раму, приводной механизм, без насаженных на вал двигателя полумуфт. Подключение двигателя указано в пункте 2.2.5.4.

Пробный пуск необходимо делать с насаженной на вал двигателя полушпонкой.

Во избежание повреждения подшипников, у двигателей с роликовыми подшипниками, длительная работа на холостом ходу без нагрузки на подшипники недопустима.

У двигателей со специальными подшипниками (например, радиально упорными) пуск двигателя необходимо производить в положении определенным монтажным исполнением.

- 2.2.5 Монтаж
- 2.2.5.1 Насадка ременных шкивов, зубчатых шкивов или полумуфт на конец вала.

Перед насадкой конец вала должен быть очищен от консервационной смазки и смазан противозадирной пастой «KLUBER» - ALTEMP Q NB50 или аналогичными по свойствам смазками. Насаживаемые детали должны быть отбалансированы с полушпонкой.

Насадку деталей на вал двигателя производить без механических ударов, методом нагрева деталей, используя специальные инструменты (при наличии резьбовых отверстий в валах).

Стандартные двигатели со степенью защиты IP55 и выше должны иметь сливные отверстия. В Приложении Е с учетом способа монтажа двигателя (IM1XXX рис.Е.1 и IM3XXX рис.Е.2) показаны сливные отверстия с ввернутыми заглушками.

При установке двигателя проверить сливные отверстия и состояние заглушек.

При необходимости – прочистить отверстия и закрыть их заглушками.

2.2.5.2 Соосность

При монтаже двигателей следить за качественным состоянием фундамента, рамы или приводного механизма. Резонансная вибрация места установки (монтажа) не должна превышать требований пункта 2.1.6.

Для обеспечения соосности вала двигателя с приводным механизмом можно использовать U-образные прокладки, устанавливаемые между лапами двигателя и фундаментом непосредственно под болт крепления.

Не допускается установка прокладки вдали от болта во избежание напряжений в лапе двигателя и ее поломки.

Допуск соосности вала двигателя с приводным механизмом ≤ 0.04 мм и угловое смещение ≤ 0.03 мм на длине 100 мм.

Насаженные массы деталей на вал двигателя, натяжка ремней при клиноременных передачах не должны создавать радиальные и осевые нагрузки на вал двигателя больше величин, указанных в каталоге производителя.

2.2.5.3 Защита от твердых частиц и влаги

Для двигателей вертикального исполнения устанавливаемых валом вниз без наличия защитного козырька на кожухе вентилятора принять меры по отсутствию попадания твердых частиц в отверстия кожуха вентилятора.

Для двигателей вертикального исполнения (вал- вверх или вниз) при установке на открытом воздухе со степенью защиты IP54 и ниже установить над двигателем защитный козырек.

2.2.5.4 Подключение

Заземление

Перед подключением двигатель необходимо заземлить.

В стандартном исполнении для заземления имеется специальный болт в коробке выводов и для всех двигателей типа «A» с высотой оси вращения ≥ 280 мм и типа «RA» с высотой оси вращения ≥ 315 мм на корпусе имеют дополнительный болт заземления.

По специальному заказу на корпусе двигателя меньших габаритов может также находиться дополнительный болт заземления.

Места контактов мест заземления должны быть чистыми, сухими и не иметь ржавчины.

Подключение питающего напряжения

Информация о коробке выводов (материал, размер кабельных вводов, максимальный наружный диаметр кабеля, диаметр силовых контактных болтов, возможность разворота коробки выводов) указана в каталоге производителя.

Герметизация силового питающего кабеля в кабельном вводе обеспечивается уплотнительной прокладкой, типоразмеры которой указаны в приложении Д.

Место ввода кабелей в кабельные вводы допускается загерметизировать герметиками с целью увеличения надежности и обеспечения требуемой степени защиты.

При соединении питающего кабеля к контактному болту необходимо затянуть гайки с крутящим моментом, значение которого указано в Приложении Γ .

Подключение производить согласно схемам, имеющимся в клеммной коробке и учесть данные по напряжению указанные на фирменной табличке.

Типовые схемы подключения приведены в приложение А.

Контактные болты и места контактов должны быть чистыми, сухими и не иметь ржавчины. Минимальные воздушные зазоры между неизолированными токопроводящими элементами и системой заземления не должны быть меньше приведенных значений 8 мм при $U_H \le 550~B$, 10~MM при $U_H \le 725~B$, 14~MM при $U_H \le 1000~B$.

Следить, чтобы при монтаже в коробке выводов не было посторонних предметов и внутрь двигателя не попали крепежные детали.

Направление врашения

В стандартном исполнении все двигатели с поверхностным охлаждением могут вращаться в обе стороны. По умолчанию двигатели изготавливаются с направлением вращения по часовой стрелке (Правое), если смотреть со стороны привода при правильном подключении согласно схем и чередования фаз.

Для изменения направления вращения поменять местами два силовых провода на контактных болтах.

ІС416 – независимая вентиляция

В случае независимой вентиляции (способ охлаждения IC416) направление вращения вентилятора узла независимой вентиляции указано стрелкой на кожухе вентилятора. Вращение вала двигателя реверсивное.

Подключение узла независимой вентиляции

Подключение узла независимой вентиляции производится отдельной питающей линией. Не допускается узел независимой вентиляции подключать к силовым контактам питания двигателя. Схемы подключения независимой вентиляции указаны в Паспорте на узел независимой вентиляции

Подключение цепей управления и встраиваемых элементов при их наличии

Для ввода кабеля управления использовать кабельные вводы в коробке выводов. Для подключения кабеля управления использовать специальные контактные панели в коробке выводов.

Контроль температуры обмотки статора

Подключение РТС терморезисторов производить с учетом требований пункта 1.4.8.1.

Подключение Pt100 термопреобразователей сопротивления производить с учетом требований пункта 1.4.8.1.

Подключение биметаллических термовыключателей производить с учетом требований пункта 1.4.8.1.

Обогрев обмотки

Подключение ленточного антиконденсатного нагревателя производить с учетом требования пункта 1.4.8.2.

Контроль температуры подшипников

При контроле температуры подшипников подключение Pt100 термопреобразователей сопротивления производить с учетом требований пункта 1.4.8.3.

После подключения всех схем проверить надежную затяжку мест подключения, кабельных вводов, герметичность ввода кабеля (при необходимости намотайте на кабель дополнительный слой изоляционного материала).

Закрыть крышку коробки выводов и надежно затянуть болты крепления.

2.3 Запуск двигателя

Перед пуском двигателя сделать профилактику подшипниковых узлов см. пункт 3.2.

- 2.3.1 Пробный пуск на холостом ходу без монтажа двигателя на раму и к приводному механизму для проверки его состояния и работоспособности производить с учетом пункта 2.2.4
 - 2.3.2 Пуск и работа в штатном состоянии с приводным механизмом

При прямом пуске от сети учитывать действие переходного процесса, в результате которого ток двигателя в начальный момент равен пусковому току и в процессе разгона снижается до номинального или меньшего значения в зависимости от статической нагрузки. Время разгона двигателя (снижение тока в сторону уменьшения от пускового значения) зависит от момента инерции системы и пусковых характеристик двигателя (значений пускового, минимального и максимального моментов).

Допускается прямой пуск от сети при напряжении, равном 80% от номинального.

При пуске от сети с переключением звезды на треугольник напряжение сети должно соответствовать напряжению двигателя при соединении в треугольник. При этом запуске учитывать переходный процесс, оговоренный выше при прямом пуске со следующим условием: в начальный момент запуска на звезде пусковой ток двигателя ниже регламентированного значения в 3 раза; пусковой, минимальный и максимальный моменты двигателя ниже регламентированных значений в 3 раза.

2.3.3 Требования по пуску в составе частотного привода указаны в приложении В.

3 ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Условия эксплуатации должны соответствовать назначению изделия и характеристикам.

3.1 Действия в экстремальных условиях

Двигатель немедленно (аварийно) отключить от сети в следующих случаях:

- появление дыма или огня в двигателе или в его пускорегулирующей аппаратуре;
- вибрация сверх допустимых норм, угрожающая целостности двигателя;
- поломка приводного механизма;
- нагрев подшипника сверх допустимой температуры

В случае возгорания двигателя для его тушения необходимо применять только углекислотные огнетушители.

ЗАПРЕШАЕТСЯ ПРИМЕНЯТЬ ПЕННЫЕ ОГНЕТУШИТЕЛИ.

3.2 Подшипники и подшипниковые узлы

Информация по типам подшипников в зависимости от габарита двигателя указана в пункте 1.4.6.

Срок сохраняемости стандартно применяемых смазок в подшипниках или подшипниковых узлах до ввода в эксплуатацию или при длительном простое:

- не более 3-х лет при нормальных условиях хранения двигателя в отапливаемых, не содержащих пыли и вибрации помещениях;
 - не более 2-х лет при хранении в не отапливаемых помещениях или на открытом воздухе. По истечении срока сохраняемости смазки:
 - а) закрытые подшипники (см. п.3.2.1) перед вводом в эксплуатацию необходимо заменить;
- б) подшипниковые узлы с открытыми подшипниками с заложенной смазкой на весь срок службы (см. п.3.2.2) перед вводом в эксплуатацию необходимо разобрать, старую смазку удалить, промыть, заложить новую смазку.

Эту процедуру нужно проводить при переконсервации двигателей для хранения на более длительные сроки (указанные выше) с целью сохраняемости подшипников; в противном случае возможно потребуется замена подшипников.

в) подшипниковые узлы с открытыми подшипниками с пополнением смазки для хранения на более длительные сроки (указанные выше) необходимо переконсервировать.

Процесс переконсервации пополнением смазки:

- снять на время смазывания уплотнительные пробки из отверстий выпуска смазки, если пробки установлены):
- ввести новую смазку в подшипник, в количестве не менее половины от рекомендуемого в табл. п. 3.2.3, а потом вращать двигатель на 5-10 мин;
 - после останова двигателя добавлять смазку до количества, указанного в табл. п. 3.2.3;
 - закрыть выпускные отверстия уплотнительными пробками.

Переконсервацию можно производить, не включая двигатель, вводить смазку в количестве, указанном в табл. п.3.2.3, но в данном случае есть вероятность остатка большего количества старой смазки.

Цель консервации — максимально заполнить подшипниковый узел смазкой для предотвращения попадания и скапливания влаги, т. к. после обкатки двигателей на заводе перед упаковкой часть смазки выходит из отверстий выпуска смазки и в таком исполнении надежность сохраняемости подшипников - не более указанных сроков.

3.2.1 Уход за закрытыми подшипниками

Для двигателей, оснащенных закрытыми подшипниками с долговременной смазкой, рекомендуется выполнить их замену при работе в условиях температуры окружающей среды плюс 40°C приблизительно через 10000 часов эксплуатации для 2-х полюсных двигателей и 20000 часов эксплуатации для двигателей с числом полюсов 4 и более, но не реже одного раза в 3-4 года.

Если температура окружающей среды плюс 25°C можно ожидать удвоенного срока эксплуатации.

Для двигателей вертикальной установки срок службы подшипников уменьшается в 2 раза.

Эксплуатация с закрытыми подшипниками при температуре окружающей среды более плюс 40°С недопустима.

Указанные сроки действительны для двигателей, введенных в эксплуатацию до одного года после даты изготовления или после замены подшипников.

Максимально допустимая температура подшипника при эксплуатации:

- плюс 100°C замеренная встроенным в подшипниковый узел термометром сопротивления;
- плюс 90°С замеренная на подшипниковом щите или крышке подшипника снаружи двигателя в зоне прилегания подшипника.

Независимо от температуры окружающей среды в зоне подшипника со стороны привода может быть увеличена температура в связи с ухудшением отвода тепла из-за установки в зоне приводного вала оградительных конструкций. Учитывать этот фактор и измерять температуру воздуха в зоне подшипника или температуру подшипника. В оградительных сооружениях сделать вентиляционные окна.

3.2.2 Уход за открытыми подшипниками с заложенной смазкой на весь срок эксплуатации (без пополнения смазки)

Для двигателей, оснащенных открытыми подшипниками с долговременной смазкой, срок службы смазки указан в таблице при работе в условиях температуры окружающей среды не более плюс 40°C.

Для каждых 10° С повышения температуры окружающей среды табличное значение срока службы смазки уменьшается в 0.7 раза.

Максимально допустимое увеличение температуры окружающей среды на 20°C уменьшает значение срока службы смазки в 2 раза.

	1 40111	тда орона .	our y me o br		PDITDIT ITO,	·	. (003 11011	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Срок слу	Количество							
	смазкой		смазки						
Типоразмер	частоте		в граммах						
двигателя	Горизон	тальная ус	тановка ді	вигателя			на каждый		
	Шарико	подшипник							
	3600	3000	1800	1500	1200	≤1000	D-end	N-end	
A (AMTK)200 RA200,225	17000	24000	33000	33000	33000	33000	70	60	
A (AMTK)225 12000 17000 33000 33000 33000 80									

Таблица срока службы смазки в открытых подшипниках (без пополнения)

Если температура окружающей среды плюс 25° С можно ожидать удвоенного срока эксплуатации двигателя.

Для двигателей вертикальной установки срок службы подшипников уменьшается в 2 раза. Максимально допустимая температура подшипника при эксплуатации плюс 120°C.

Независимо от температуры окружающей среды в зоне подшипника со стороны привода может быть увеличена температура в связи с ухудшением отвода тепла из-за установки в зоне приводного вала оградительных конструкций. Учитывать этот фактор и измерять температуру воздуха в зоне подшипника или температуру подшипника. В оградительных сооружениях сделать вентиляционные окна.

После окончания срока службы смазки подшипниковый узел необходимо разобрать. При хорошем состоянии подшипника промыть подшипник, удалить старую смазку из подшипникового узла и *произвести полную замену смазки*.

При плохом состоянии подшипника - подшипник заменить.

Указанные сроки службы смазки действительны для двигателей, введенных в эксплуатацию до одного года после даты изготовления.

3.2.3 Уход за открытыми подшипниками с пополнением смазки через ниппель

У двигателей, простоявших до года после даты изготовления или после последней консервации подшипниковых узлов, при первом запуске двигателя необходимо вывернуть пробки из каналов выхода смазки и ввернуть обратно через 1-2 часа работы. Данная процедура необходима для выхода излишка смазки с целью снижения нагрева подшипника.

У двигателей после года хранения (простоя) перед эксплуатацией необходимо пополнить подшипники новой смазкой в количестве, указанном в таблице п. 3.2.3.

Для двигателей, оснащенных открытыми подшипниками с пополнением смазки в процессе эксплуатации при температуре окружающей среды плюс 20°C периодичность пополнения смазки в моточасах указана в таблице. При измерении температуры встроенными термометрами сопротивления в подшипниковом узле примерная температура подшипника плюс 80°C, а при внешнем измерении температуры поверхности щита в зоне подшипника температура подшипника оценивается как температура щита, увеличенная на 10°C.

При увеличении температуры окружающей среды или температуры подшипника на каждые 15°C интервалы пополнения смазки уменьшаются в 2 раза.

В благоприятных условиях значения таблицы можно удвоить, если температура подшипника составляет ниже плюс 70°C.

			•						
		Количе	ство	Периоди	иность по	ополнения	т смазки в	в моточас	ах эксплу-
Габарит	Коли-	смазки	в грам-	атации при номинальной частоте вращения в об/мин					
-	чество	мах на	каждый	Горизон	тальная у	становка ,	двигателя	I	
двигателя	полюсов	подшиг	подшипник		вые подш	ипники	-		
		D-end	N-end	3600	3000	1800	1500	1000	500-900
132	все	100	100	9000	11000	17000	19000	23000	26500
160	все	130	130	7000	9500	14000	17000	21000	24000
100	2	150	150	6000	8000	13500	16000	20000	23000
180	4,6,8	200	150	6000	8000	13500	16000	20000	23000
200	2	200	200	4000	6000	11000	13000	17000	21000
200	4,6,8	230	200	4000	6000	11000	13000	17000	21000
225	2	230	230	3000	5000	10000	12500	16500	20000
225	4,6,8	260	230	3000	5000	10000	12500	16500	20000
250	2	260	260	2500	4000	9000	115000	15000	18000
250	4,6,8	330	260	2500	4000	9000	115000	15000	18000
200	2	330	330	2000	3500	8000	105000	14000	17000
280	4,6,8	370	330	2000	3500	8000	105000	14000	17000
315	2	330	330	2000	3500	6500	8500	12500	16000
	4,6,8	450	330	2000	3500	6500	8500	12500	16000
255 400	2	450	450	1200	2000	4200	6000	10000	13000
355,400	4,6,8	600	450	1200	2000	4200	6000	10000	13000

Таблица - Периодичность пополнения смазки с пополнением смазки через ниппель

Для двигателей вертикальной установки периодичность пополнения смазки подшипников уменьшается в 2 раза.

Для двигателей, оснащенных роликовыми подшипниками, периодичность пополнения смазки уменьшается в 2 раза

Максимально допустимая температура подшипника при эксплуатации плюс 120°С.

Независимо от температуры окружающей среды в зоне подшипника со стороны привода может быть увеличена температура в связи с ухудшением отвода тепла из-за установки в зоне приводного вала оградительных конструкций. Учитывать этот фактор и измерять температуру воздуха в зоне подшипника или температуру подшипника. В оградительных сооружениях сделать вентиляционные окна.

В процессе эксплуатации пополнение смазки производить по достижении количества моточасов, указанных на таблице, но не реже одного раза в год.

Для пополнения рекомендуется применять смазки, заложенные заводом изготовителем, или аналогичные высококачественные пластичные смазки с аналогичными характеристиками.

Таблица – Типы применяемых смазок

Клима-	Кате	Тип	Темпе-	1	Вязкость			Исполь-
тиче-	гория	пластичной	ратур-	JG.	базового	'nΖ		зование
ское	разме-	смазки	ный	Ŗ	масла	LHO	ая	в двигателе
испол-	щения		диапазон	သ	при +40°С,	000	BH:	
нение			смазки, °С	Класс	mm ² /c	Скоростной фактор	Условная	
						ပမ	> =	
		ки для эксплуатации при $t_{воз.}$			- 55°C			
	1,2,3,4,5	UNIREX N2	-30+150	2	115	+	1	Стандартное
ХЛ УХЛ	4, 5 4, 5	UNIREX N3	-20+165	3	115	+	1	
y AJI	4, 3	Omnilith MB2	-10+165	2	113	+	1	Стандартное
		Shell Gadus S5 V100 2	-50+150	2	100	++	1	
		Mobilith SHC 100	-40+150	2	100	++	1	
		Klüberplex BEM 41-132	-40+150	2	120	++	1	
Пластич	ные смазки	и для эксплуатации при низких т	гемперату	pax t	воз от - 60°C	до + 50	0°C	
ХЛ	1, 2, 3	ЦИАТИМ-221F	-60+160	2	85	+	2	Стандартное
УХЛ	1, 2, 3	KLUBER ISOFLEX ALLTIME SL2	-50+150	2	25	++	2	
О	1, 2, 3	KLUBER ASONIC GLY 32	-50+140	2	25	++	2	
		ТОМФЛОН ПАО 60М	-60+140	2	25-30	1	2	
Пластич	ные смазк	и для эксплуатации при высоки	их темпера	атура	ах (выше + 5	55°C) t	воз ОТ	-40°С до +85°С
		Kluber ASONIC GHY 72	-40+180	2	72	++	3	
		Kluber Asonic HQ 72-102	-40+180	2	100	++	3	
		Klüberquiet BQH 72-102	-40+180	2	100	++	3	Взамен
		Klüberquiet BQR 78-102	-40+180	2	100	++	3	Взамен
		ТОМФЛОН СПМ 180	-50+180	2	90-110	++	3	Стандартное *
		·			•			

Примечание.

- 1. Линейная скорость тел качения подшипника:
 - для «+» менее 530000 мм /мин ⁻¹;
 - для «++» от 530000 мм /мин $^{\text{-1}}$ и до 700000 мм /мин $^{\text{-1}}$
- 2. * Пластичные смазки, эксплуатируемые при высоких температурах, применяют для работы в режиме дымоудаления:
 - 2 ч при 300°C
 - 2 ч при 400°C
 - 1 ч при 600°C.
- 3. В случае использования смазки, не соответствующей указанной в таблице, или использование других типов смазки, на двигателе будет установлена табличка с указанием типа смазки.

Максимально допустимая температура подшипника при эксплуатации для смазок условной группы «1» и «2» плюс 120°С.

Максимально допустимая температура подшипника при эксплуатации для смазок условной группы «3» до плюс 150°С при применении специальных подшипников с термостабилизаций тел качения для работы при температуре не менее 150°С.

Смазки с классом NGLI степень 3 оптимальны для вертикального расположения вала.

Совместимость между собой разных типов пластичных смазок:

- условной группы «1» совместимы;
- условной группы «2» совместимость, требуется консультация у производителя;
- условной группы «3» совместимы:
- условных групп «1», «2», «3» несовместимы.

ВНИМАНИЕ: при смешивании смазок разных марок требуется консультация у производителей смазочных материалов на их совместимость!!!

Перед пополнением вывернуть пробки из каналов выхода смазки.

Процесс пополнения смазки при вращающемся двигателе:

- ввести новую смазку в подшипники в количестве, указанном в таблице;
- дать двигателю вращаться 1-2 часа, чтобы убедиться в удалении лишней смазки.
- закрыть выпускные отверстия пробками.

Процесс пополнения смазки при остановленном двигателе:

- ввести новую смазку в подшипники (половину от рекомендуемого количества в подшипники, включить двигатель на 5-10 мин;
 - после останова двигателя добавить смазку до количества, указанного в таблице;
- дать двигателю вращаться 1-2 часа, чтобы убедиться в удалении лишней смазки из каналов выхода смазки;
 - закрыть выпускные отверстия пробками.

Пробки для выхода смазки установлены только со стороны выходного конца вала для монтажного исполнения IM10XX. Со стороны вентилятора и со стороны фланца монтажного исполнения IM20XX, IM30XX отверстия для выхода смазки пробками не закрываются.

Во время пуска может случиться, что некоторое время будут слышны сильные шумы, создаваемые подшипником. Шумы в подшипнике не представляют опасности, если ещё не была достигнута рабочая температура и шумы обусловлены повышенной густотой и динамической вязкостью смазки подшипника.

В процессе эксплуатации двигателя допускается выход избыточного количества смазки через манжету по валу двигателя.

3.3 Техническое обслуживание

Порядок проведения технического осмотра (далее ТО) и периодичность проведения указаны в таблице. По истечении 3-х лет эксплуатации периодичность проведения ТО повторяется.

Таблица – Порядок и периодичность проведения технического обслуживания

	тионици порядок и периоди пость проведения техни всекого оселуживания					
№ TO	Порядок проведения технического обслуживания двигателя	Периодич ность	Примечание			
	 проверить отсутствие длительно действующей перегрузки двигателя по току (мощности) 	по истечении				
	 проверить отсутствие повышенной вибрации (правильность сопряжения, юстировку двигателя с приводным механизмом) 	~500 мото часов,				
	- проверить отсутствие повышенного шума подшипников, увеличение нагрева в подшипниковых узлах	самое				
TO1	 проверить места крепления двигателя к оборудованию (затяжку резьбовых соединений лап и фланца двигателя к оборудованию, отсутствие механических повреждений лап, фланцевого щита и соответствующих мест крепления приводного оборудования) 	после одного года эксплуа-				
	- проверить сопротивление изоляции обмоток	тации	п.2.2.3 Приложение Б			
	 проверить затяжку штуцера кабельного ввода, отсутствие проворачива- ния и выдергивания кабеля из кабельного ввода (от руки) 					
	 проверить сливные отверстия и состояние заглушек для стока воды (при их наличии) в двигателях со степенью защиты IP55 и выше, при необхо- димости – прочистить отверстия 		Раздел 2.2.5.1			
	- убедиться в отсутствии грязи, воды, снега в сливных отверстиях двигателя с фланцевым исполнением - валом вверх;		Приложение Е			

№ TO	Порядок проведения технического обслуживания двигателя	Периодич ность	Примечание
	- в холодное время года, при размещении двигателя на открытой площад- ке, под навесом, в неотапливаемом помещении убедиться в отсутствии об- леденения вала, вращающихся частей, при обнаружении наледи удалить		
TO2	- при неблагоприятных условиях эксплуатации (сильное загрязнение, высокая внешняя вибрация, повышенная влажность, резком перепаде температур окружающего воздуха, неотапливаемые помещения), при необходимости, повторить техническое обслуживание 1 ТО	по истечении 2-х лет эксплуа-	
	См. ТО1 и дополнительно ниже перечисленные проверки - проверить затяжку крепления всех резьбовых соединений, в том числе электрических соединений в коробке выводов	по исте- чении ~9000	Приложение Г
тоз	- проверить качество поверхности электрических контактов в коробке выводов и заземлений (отсутствие окисления, изменения цвета и ржавчины, отсутствие повреждения изолирующих трубок между проводом и наконечником, отсутствие повреждения изоляции силовых проводов в местах разделки кабеля)		
	- проверить состояние поверхности лакокрасочных покрытий		
Замена уплотнительных де- тапей	- манжеты уплотнения вала (степень защиты IP55 и выше)	через каждые 3 года экспл.	рис. 1 поз.4, 24
тнител	- прокладки уплотнительные между крышкой и корпусом коробки выводов и между корпусом коробки выводов и станиной	через	рис. 1 поз.37, 32
на упло	 прокладка уплотнительная между корпусом кабельного ввода и короб- кой выводов (при наличии в комплекте кабельного ввода) 	каждые 6 лет эксплуа-	рис. 1 поз. 38
Замен тапей	 - втулка уплотнительная внутри кабельного ввода (при заказе ЗИП втулки уплотнительной указать номер двигателя) 	тации	ПриложениеД
KOB	- заменить закрытый подшипник (потребуется разборка двигателя) См. Примечание *		п. 3.2.1 раздел 4.1
Замена подшипников и замена обмотки	- заменить открытый подшипник с заложенной смазкой на весь срок эксплуатации (потребуется разборка двигателя) См. Примечание *		п. 3.2.2 раздел 4.1
а подп на объ	- заменить открытый подшипник с пополнением смазки (потребуется разборка двигателя) См. Примечание *		п. 3.2.3 раздел 4.1
Замен и заме	- заменить обмотку (потребуется разборка двигателя)		п. 2.1.11 раздел 4.1

Примечание.

При сопряжении через эластичные муфты расчетный срок службы подшипников L10 не менее 40000 часов. При сопряжении через клиноременную, зубчатую передачи осевых вентиляторов или других механизмов большой массы, смонтированных на вал двигателя, расчетный срок службы подшипников L10 сообщается по запросу при предоставлении осевых и радиальных нагрузок на вал двигателя. Фактический срок службы подшипников зависит от многих факторов, включая условия смазывания (своевременное обслуживание по смазыванию), качества смазки, степени загрязненности, наличия перекосов, условий окружающей среды и внешних вибраций. При 96% надежности расчетный срок службы подшипников сокращается в 2 раза. Фактическое состояние подшипников необходимо проверять при ТО (визуально на наличие посторонних шумов или мониторингом с помощью технических средств).

^{*} Расчетный срок службы подшипников L10 по ISO 281 в часах эксплуатации по механической усталости зависит от радиальных и осевых нагрузок на вал двигателя от приводного механизма.

3.4 Консервация

Перед консервацией необходимо очистить двигатель от пыли, грязи и продуть сухим воздухом под давлением 1,2-2 атм. и удалить следы ржавчины. Повреждённые поверхности с лакокрасочными покрытиями восстановить.

Консервация предусматривает нанесение на наружные неокрашенные сопрягаемые поверхности деталей и узлов двигателя временного покрытия в целях их предохранения от коррозии на время транспортирования и хранения.

Консервация подшипниковых узлов, см. раздел 3.2.

При консервации незащищенные места двигателей (выходной конец вала со шпонкой, опорные поверхности лап или фланца, заземляющие зажимы и места под них, таблички и т.д.) очистить от старой смазки, обезжирить и покрыть тонким слоем масла К-17 ГОСТ10877. На выходной конец вала после нанесения смазки необходимо установить колпачок или обернуть парафинированной бумагой по ГОСТ 9569 и обвязать шпагатом.

Допустимый срок сохраняемости двигателей в упаковке и с консервацией изготовителя указан в паспорте двигателя. По истечении указанного срока необходимо произвести переконсервацию.

Если двигатель используется сезонно, в конце каждого сезона его необходимо очистить и смазать. В начале нового рабочего сезона до ввода двигателя в эксплуатацию проверить смазку подшипников. Во время простоя в холодное время года при температурах ниже минус 20°C перед пуском необходимо проверить состояние изоляции.

При необходимости двигатель просушить.

4 РЕМОНТНЫЕ РАБОТЫ И СЕРВИСНОЕ ОБСЛУЖИВАНИЕ

4.1 Разборка и сборка двигателя

Типовая конструкция двигателя приведена на рисунке 1 в разделе 1.4.

Конструкция конкретного двигателя может отличаться от типовой.

Разбирать двигатель только в случае крайней необходимости (например, для замены под-шипников или замены обмотки).

Разборку и сборку двигателя производить в помещениях, препятствующих попаданию на него и внутрь его пыли, грязи, посторонних предметов и атмосферных осадков

Перед разборкой необходимо очистить наружную поверхность двигателя, внимательно изучить способ соединения составных частей.

При разборке и сборке двигателя не допускать:

- нанесения ударов по корпусным деталям, валу, подшипникам.
- попадания бензина или керосина на обмотку двигателя при удалении консервационной смазки с посадочных поверхностей.
 - 4.1.1 Разборку двигателя производить в следующем порядке:
 - отключить двигатель и отсоединить его от питающей сети!
 - отсоединить его от приводного механизма;
 - снять с рабочего конца вала полумуфту, (шкив, шестерню)
 - разобрать узел вентиляции, вентилятор снимать с помощью съемников;
 - разобрать подшипниковые узлы и снять подшипниковые щиты 10 и 16;
 - вынуть ротор 29, без повреждения обмотки и механических частей;
- снять подшипники 7 и 27, при демонтаже подшипников использовать съемники, при монтаже подшипников подшипники нагреть.
 - 4.1.2 Сборку двигателя производить в обратном порядке.

Монтаж подшипников производить с помощью специальных приспособлений (гидравлический, винтовой пресс) без перекоса кольца относительно посадочной поверхности вала. Усилие запрессовки не должно передаваться через тела качения.

Закрытые подшипники заполнены смазкой на весь срок службы и не нуждаются в техническом обслуживании. Их не следует нагревать перед монтажом и ни в коем случае нельзя промывать!

Перед сборкой двигателя сопрягаемые поверхности смазать тонким слоем консистентной смазки

Наличие на сопрягаемых поверхностях царапин, очагов коррозии, раковин и других дефектов не допускается.

После окончания сборки двигатель проверить согласно требованиям пункта 2.2.3 и проверить легкость вращения ротора (вал должен свободно проворачиваться от руки).

4.2 Сервисное обслуживание

При заказе запасных частей необходимо указать наименование требуемых деталей или узлов, полное обозначение двигателя, указанное на табличке и заводской номер двигателя.

Гарантийный случай принимается к рассмотрению при предоставлении паспорта и указании в рекламационном акте следующей информации:

- тип и заводской номер вышедшего из строя двигателя;
- дата ввода двигателя в эксплуатацию;
- наработка в моточасах;
- наименование и назначение оборудования, в составе которого работал вышедший из строя двигатель;
- условия эксплуатации (температура, влажность, наличие пыли, вибрация в местах крепления двигателя при работе в составе оборудования, защита двигателя);
 - напряжение на клеммах двигателя и частота питающей сети;
 - потребляемый двигателем ток;
 - схема соединения на клеммной панели;
 - описание режима работы;
 - способ сочленения двигателя с приводимым механизмом;
 - величина радиальной и осевой нагрузок (при их наличии);
 - вид дефекта и описание неисправности;
- предполагаемые причины, описание возникших неисправностей, обстоятельств и причин, при которых они обнаружены;
 - периодичность и дата последнего технического обслуживания;
 - краткие данные результатов технического обслуживания.

5 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1 Упаковка

Варианты упаковки двигателей указаны в таблице в зависимости от условий транспортирования и условий хранения.

5.2 Транспортирование

При транспортировании двигателя избегать резких толчков и ударов. При манипуляциях с упакованным двигателем руководствоваться надписями на ящике. Распакованный двигатель поднимать только за грузовые приспособления, предварительно проверить надежность резьбового соединения.

ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ПОГРУЗКУ, РАЗГРУЗКУ И ПЕРЕМЕЩЕНИЕ ДВИ-ГАТЕЛЯ, ИСПОЛЬЗУЯ КОНЕЦ ВАЛА РОТОРА.

При получении двигателя его необходимо осмотреть на предмет повреждений при транспортировке. Если упаковка повреждена настолько, что можно ожидать повреждения двигателя, упаковку следует удалить в присутствии уполномоченного представителя транспортного предприятия.

5.3 Хранение

Условия хранения двигателей в зависимости от вида упаковки и срока хранения в упаковке, выполненной изготовителем, должны соответствовать указанным в таблице вариантам упаковки. После указанного срока хранения двигатель требуется переконсервировать и заново упаковать.

Таблица - Варианты упаковки

Условия транспор- тирования	Условия хран		Срок сохраняе- мости в упаков- ке и временной			
Любым видом	Характерис тика Температура окружающего воздуха			Вариант упаковки	противокорро- зионной защите,	
транспорта	помещения	верхнее значение	нижнее значение	двигателя	выполненной изготовителем	
до 200 км, кроме водного*	отапливае- мое помещение	плюс 40°С	плюс 5°С	в чехле на индивидуальном поддоне		
до 1000 км, кроме моря**	отапливае- мое помещение	плюс 40°С	плюс 5°С	в чехле на индивидуальном поддоне	2 года	
Без ограничения расстояния (кроме моря)	отапливае- мое помещение	плюс 40°С	плюс 5°С	в чехле в решетчатом ящике		
	не отаплива- емое помещение	плюс 40°С	минус 50°С	в двойном чехле с силикагелем в	3 года	
Без	навес	плюс 40°С	минус 60°С	решетчатом ящике		
ограничения расстояния	открытые площадки	плюс 40°С	минус 60°С	в двойном чехле с силикагелем в плотном ящике, обши- том изнутри водонепро- ницаемой двухслойной упаковочной бумагой	2 года	
Без ограничения расстояния (районы с тропическим климатом)	не отаплива- емое помещение	плюс 50°С	минус 50°С	в двойном чехле с силикагелем в решетчатом ящике	3 года	
Примечание	. * не более	2-х перегрузок:	; ** не более	4-х перегрузок (только	в контейнере)	

Дополнительные меры по подшипникам и подшипниковым узлам при хранении или длительном простое указаны в пункте 3.2

Размещение двигателей для хранения не должно быть хаотичным и должно обеспечивать:

- устойчивость ящиков с двигателями;
- свободный доступ подъемно-транспортного механизма;
- соблюдение противопожарных правил и норм:
- проветривание упакованных двигателей.

В процессе хранения не допускается вскрытие и повреждение упаковки.

При хранении двигателей в помещении не должно содержаться агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию. Во избежание повреждения подшипников, двигатели следует хранить только в помещениях, не подверженных вибрации.

При хранении под навесом или на открытой площадке должны быть приняты меры для предотвращения затопления водой нижних ярусов ящиков с двигателями. Для этого рекомендуется использовать прокладки высотой не менее 100 мм для исключения затопления при обильных осадках. В зимнее время года принять меры по предотвращению заметания упаковки снегом.

Перед вводом в эксплуатацию вскрыть упаковку, произвести расконсервацию неокрашенных поверхностей, прилегающих поверхностей «станина - подшипниковый щит», узлов коробки выводов. Удалить мешочки с силикагелем.

6 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ УСТРАНЕНИЯ

Возможная неисправность	Вероятная причина	Метод устранения
	Перегорел предохранитель	Заменить предохранитель на идентичный в соответствии с номинальным значением
	Срабатывание по перегрузке	Проверить и настроить срабатывание по перегрузке двигателя
	Несоответствие значения	Проверить на соответствие значение напря-
	напряжения питания данным	жения питания данным заводской таблички
	заводской таблички	
	Несоответствие схемы соединения проводов и схемы на	Проверить на соответствие схему соединения проводов со схемой на крышке коробки вы-
	крышке коробки выводов	водов
	Обрыв в силовой или цепи	Можно судить по дребезжанию выключателя.
Двигатель не запускается	управления (можно судить по	Проверить соединения проводов и работу
	дребезжанию выключателя)	элементов управления
	Механический дефект	Проверить свободное вращение двигателя и привода. Проверить подшипники и их смазку
	Короткое замыкание в статоре (можно судить по перегорев- шему предохранителю)	Необходима перемотка обмотки
	Слабые соединения обмотки	Открыть крышку коробки выводов и опреде-
	статора	лить неисправность путем измерений
	Неисправный ротор	Проверить исправность стержней ротора и коротко замыкающих колец
	Перегрузка двигателя	Уменьшить нагрузку
	Разрыв цепи	Проверить предохранители, устройство защиты от перегрузки, соединение обмоток, цепи управления
Двигатель остановился	Неправильно выбран двигатель	Заменить тип двигателя, связаться с изготовителем
Asimureus cerumesiuses	Перегрузка двигателя	Уменьшить нагрузку
	Низкое напряжение	Проверить напряжение на клеммах двигателя, проверить соединения.
	Обрыв фазы	Проверить соединения
Двигатель запускается, затем останавливается	Потеря питающего напряжения	Проверить соединения, предохранители и цепи управления
	Неправильно выбран двигатель	Заменить тип двигателя, свяжитесь с изготовителем
	Низкое напряжение на клем-	Подать более высокое напряжение или применить пусковой трансформатор, уменьшить
Двигатель не достигает но-	мах двигателя	нагрузку, проверить соединения, сечение ка- белей
минальной скорости	Большая нагрузка при пуске	Проверить максимальную нагрузку двигателя при пуске
	Неисправный ротор	Проверить исправность стержней ротор и коротко замыкающих колец
	Обрыв в цепи питания статора	Найти неисправность с помощью приборов и устранить ее

Возможная неисправность	Вероятная причина	Метод устранения		
	Перегрузка двигателя	Уменьшить нагрузку		
Слишком большое время разгона двигателя и/или большое потребление тока	Низкое напряжение на клеммах двигателя	Подать более высокое напряжение или применить пусковой трансформатор, уменьшить нагрузку, проверить соединения, сечение кабелей		
	Неисправный ротор	Проверить исправность стержней ротора и коротко замыкающих колец		
Неправильное направление	Неправильная	Изменить соединение на клеммах двигателя		
вращения	последовательность фаз	или в щите питания		
	Повреждение подшипника	Заменить подшипник		
	Перегрузка подшипника	Проверить центровку, радиальные и осевые усилия		
	Нарушение центровки	Выполнить центровку заново		
	Подшипник загрязнен	Промыть подшипник		
	Недостаток смазки	Пополнить смазку		
Повышенный нагрев подшипника	Избыток смазки	Вывернуть болты (пробки) для выхода смаз- ки и включить двигатель до полного выхода лишней смазки		
	Ухудшение смазочного	Очистить подшипники, заменить старую		
	материала	смазку на новую		
	Перетянутый ремень	Уменьшить затяжку ремня		
	Вал изогнут или сломан	Заменить вал или ротор		
	Шкивы далеко от подшипника	Переместить шкивы ближе к подшипнику		
	Маленький диаметр шкива	Использовать шкив большего диаметра		
	Плохо отбалансирован ротор	Устранить причину возникновения		
	или рабочий механизм	дисбаланса		
Повышенная	Ослаблены крепежные фундаментные болты и другие крепежные детали на двигателе	Подтянуть все крепежные детали		
вибрация двигателя	Недостаточная жесткость фундамента (рамы)	Увеличить жесткость фундамента (рамы)		
	Неисправные подшипники	Заменить подшипники		
	Трехфазный двигатель работает в двухфазном режиме	Проверить соединения		
	Большой осевой зазор	Проверить подшипники		
	Вентилятор трется о кожух	Починить вентилятор/кожух		
	Двигатель отсоединился от	1		
Повышенный шум	фундамента	Затянуть болты, проверить центровку		
двигателя	Воздушный зазор неравномерный	Проверить центровку и подшипники		
	Дисбаланс ротора	Сбалансировать заново		
	Недопустимо повышено	Установить номинальные значения		
	напряжение питающей сети	параметров питающей сети		
Двигатель перегревается	Двигатель перегружен	Проконтролировать фазный ток двигателя (должен быть не более данных на фирменной табличке). Устранить перегрузку (возможно угол атаки приводного вентилятора больше нормы)		
	Плохое охлаждение	Проверить требования пункта 2.1.5. При загрязнении корпуса произвести чистку		

Возможная неисправность	Вероятная причина	Метод устранения		
•	Заклинивание механизма	Устранить причины заклинивания		
	Недопустимо понижено	Установить номинальные значения		
Пругражату из	напряжение питающей сети	параметров питающей сети		
Двигатель не	Межвитковое замыкание в	Замерить сопротивление и токи фаз обмотки		
разворачивается,	обмотке статора	замерить сопротивление и токи фаз обмотки		
гудит	Короткое замыкание между	Измерить сопротивление изоляции		
	фазами или на корпус	измерить сопротивление изоляции		
	Обрыв фазы сети	Проверить питающую сеть		

7 ОТВЕТСТВЕННОСТЬ

В период действия гарантийного срока изготовитель не несет ответственность за повреждения, возникшие по вине потребителя в результате:

- неправильной транспортировки и хранения;
- неправильного и неквалифицированного монтажа, подключения, эксплуатации и технического обслуживания;
- разборки, доработки или изменения конструкции двигателя без согласования с изготовителем;

8 РЕАЛИЗАЦИЯ

Двигатели не подлежат реализации через розничную сеть.

9 УТИЛИЗАПИЯ

Двигатели, утратившие свои первоначальные потребительские свойства, не представляют опасности для здоровья человека и окружающей среды.

Материалы, из которых изготовлены детали двигателя (чугун, сталь, медь, алюминий), поддаются внешней переработке и могут быть реализованы по усмотрению потребителя.

Детали двигателя, изготовленные с применением пластмассы, изоляционные материалы, могут быть переработаны или захоронены.

Приложение А (обязательное)

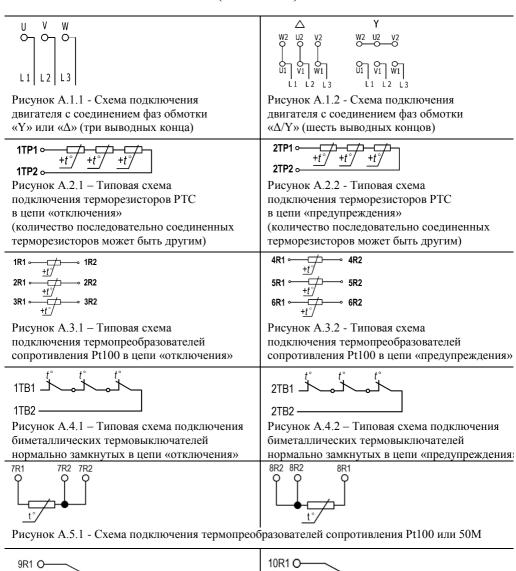
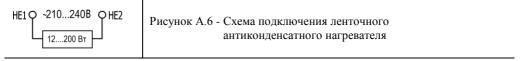



Рисунок А.5.2 - Схема подключения преобразователей термоэлектрических ТХА или ТХК

10R2 O

Приложение Б (обязательное)

Сушка двигателя

В практически холодном состоянии сопротивление изоляции обмоток статора и обмоток встроенных элементов (термозащиты, ленточных нагревателей) относительно корпуса двигателя, между фазами обмотки двигателя и между обмотками встроенных элементов должно быть не ниже 10 МОм.

Во время сушки необходимо вести постоянное наблюдение за температурой и изменением сопротивления изоляции, составить протокол сушки. Замерять температуру и сопротивление изоляции в начале сушки через каждые 20-30 минут и по достижении установившейся температуры через каждый час. Во время сушки вследствие испарения влаги при нагревании сопротивление изоляции обычно сначала снижается, затем постепенно возрастает и, наконец, становится постоянным или незначительно увеличивается. Сушка считается законченной, если сопротивление изоляции обмоток относительно корпуса и между обмотками достигло не менее 3 МОм. Сушку прекратить, если сопротивление изоляции в течение 3-4 часов не изменяется.

Двигатель можно сушить следующими способами:

- наружным обогревом;
- переменным током;
- постоянным током;
- ленточными нагревателями (устанавливаются в двигатель только по заказу);

При сушке наружным обогревом не допускается:

- прямого воздействия огня;
- превышения температуры нагрева больше 90°C

При сушке переменным однофазным током или постоянным током значения токов указаны в таблице в зависимости от схемы подключения обмотки и температуры окружающей среды. Схемы подключения обмотки для сушки двигателя указаны на рисунке Б.1 для соединения « Δ » и на рисунке Б.2 для соединения «Y».

Таблица Б.1 Значения токов при сушке

Температура	Voueno hungant iš nonovom	Соединение		
окружающей среды	Контролируемый параметр	Δ	Y	
минус 10 °С плюс 10 °С	Переменный ток, %Ін	59%	68%	
минуе то С плюе то С	Постоянный ток, %Ін	93%	107%	
плюс 10 °С плюс 40 °С	Переменный ток, %Ін	48%	55%	
плюс то С плюс 40 С	Постоянный ток, %Ін	74%	85%	

Справочные значения напряжения источника питания могут варьироваться:

- для переменного тока от 10% Uном до 30% Uном,
- для постоянного тока от 1% Uном до 10% Uном,

где Uном - номинальное напряжение двигателя.

Сушку двигателя производить со снятыми крышкой и корпусом коробки выводов.

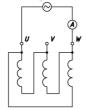


Рисунок Б.1 — Схема соединения обмоток « Δ » при сушке обмотки

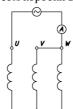


Рисунок Б.2 – Схема соединения обмоток «Y» при сушке обмотки

Приложение В (обязательное)

Дополнительные требования к двигателям, работающие от ПЧ

1. Структура обозначения двигателей указана в разделе 1.1 руководства по эксплуатации. В таблице В.1 приведены различия в конструкции и ограничения в эксплуатации при работе от ПЧ двигателей без маркировки и с маркировкой буквой «F» в обозначении.

	Таблица В.1
Двигатели без маркировки буквой «F»	Двигатели с маркировкой буквой «F»
Критерии выбора компонентов частотно-	Критерии выбора компонентов частотно-
регулируемого привода по ГОСТ Р МЭК/ТС 60034-17-2009	регулируемого привода по ГОСТ IEC/TS 60034-25-2017
Изоляция двигателей рассчитана для работы	Изоляция двигателей выполнена с повышен-
двигателя от источника синусоидального	ной надежностью для работы от преобразова-
напряжения, коэффициент искажения синусо-	теля частоты.
идальности которого не превышает 0,08 со-	
гласно ГОСТ ІЕС 60034-1.	AMERICAN AMERICA CON HISTORICA IN TRAINS
Амплитуда импульсов приложенного к двигателям межфазного напряжения и скорость их	Амплитуда импульсов приложенного к двигателям межфазного напряжения и скорость их
нарастания должны соответствовать	нарастания должны соответствовать
FOCT P M9K/TC 60034-17-2009	ГОСТ IEC/TS 60034-25-2017
(рисунок В.1- пунктирная линия)*	(рисунок В.1- сплошная линия)*
В связи с несинусоидальностью питающего напряжения от ПЧ перегревы обмоток двигателей увеличиваются по отношению к работе от сети, поэтому мощности двигателей должны быть уменьшены по сравнению со значениями на фирменных табличках в зависимости от диапазона регулирования скорости и вида нагрузки согласно каталога двигателей для работы с ПЧ**.	Мощности двигателей и диапазон регулирования скорости указаны на фирменных табличках**.
Изолированные подшипники внутри двигателей отсутствуют, поэтому к двигателям с высотой оси вращения 315 мм по DIN EN 50347 или 280 мм по ГОСТ 31606 и выше во избежание возникновения подшипниковых токов должен быть подключен синусный фильтр, либо фильтр синфазной помехи, выбираемые согласно рекомендациям производителя ПЧ.	В двигателях с высотой оси вращения 315 мм по DIN EN 50347 или 280 мм по ГОСТ 31606 и выше во избежание возникновения подшипниковых токов на стороне противоположной приводу установлен один изолированный подшипник с сопротивлением изоляции не менее 100 Ом на 1 МГц.
Кабельные вводы выполнены без электромагнитной совместимости. Для 360-градусной концевой заделки экрана силового кабеля необходимо использовать специальный экранный зажим.	В случае специального заказа кабельные вводы двигателя могут быть выполнены с электромагнитной совместимостью для 360-градусной концевой заделки экрана силового кабеля. В противном случае для 360-градусной концевой заделки экрана силового кабеля необходимо использовать специальный экранный зажим.

^{* –} для обеспечения требований по качеству питающего напряжения на входе двигателя должны устанавливаться выбираемые согласно требованиям производителя ПЧ реакторы, фильтры

du/dt или синусоидальные фильтры, обеспечивающие снижение скорости нарастания выходного напряжения du/dt.

- ** при регулировании в сторону увеличения оборотов от номинальных, мощность нагрузки постоянная, при этом вступают в силу ограничения по максимальным оборотам, вибрации и перегрузочной способности двигателя;
- при вентиляторной нагрузке регулирование в сторону увеличения оборотов от номинальных недопустимо;
- общие характеристики двигателей для работы в составе частотно-регулируемого привода указаны в каталоге, характеристики конкретного двигателя высылаются по запросу.

Umax, B

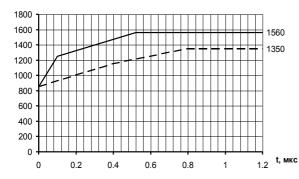


Рисунок В.1 — Зависимости допустимой амплитуды импульса напряжения на зажимах двигателя U_{max} от времени нарастания импульса t

- 2. Условия эксплуатации регулируемого привода должны соответствовать требованиям ГОСТ Р 51137 «Электроприводы регулируемые асинхронные для объектов энергетики. Общие технические условия».
 - 3. Мощность, момент нагрузки и диапазон регулирования.

При работе двигателя в составе частотно-регулируемого привода должны быть обеспечены следующие законы регулирования.

Для вентиляторной нагрузки:

- $(f/fhom)^2$ ≤ U/Uhom ≤ f/fhom
- M ~ n² (момент нагрузки должен быть пропорционален квадрату скорости);
- диапазон регулирования скорости от 20% до 100% от номинального значения.

Для приводов с постоянным моментом нагрузки:

- U/f =const.
- -M = const.
- диапазон регулирования скорости должен соответствовать значению, указанному на фирменной табличке.
- 4. Для двигателей со способом охлаждения IC416 установка и эксплуатация двигателя в соответствии с пунктом 2.1.4 руководства по эксплуатации и степенью защиты узла независимой вентиляции, указанной в паспорте на узел.
- 5. Для двигателей со способом охлаждения IC416 температура окружающей среды в соответствии с климатическим исполнением двигателя, указанным на табличке и допустимой температуры узла независимой вентиляции, указанной в паспорте на узел.
 - 6. Подключение

Также смотрите руководство производителя преобразователя частоты.

6.1 Для двигателей всех габаритов кабеля между преобразователем частоты, выходным реактором или фильтром и двигателем должны быть экранированы концентрическими экранами. Преобразователь частоты, выходной реактор или фильтр, двигатель и экраны на обоих концах должны быть заземлены. Концевая заделка экрана должна быть 360-градусной. Экран должен быть заземлен внутри клеммной коробки двигателя и внутри выводной платы ПЧ. Проводи-

мость экрана постоянному току должна быть не менее 50% проводимости фазного проводника, а на частотах до $1~\mathrm{M}\Gamma\mathrm{u}$ – не менее 10%.

Сопротивления всех силовых подключений и заземлений должны быть менее 1 Ом на частоте 1 МГц.

Схема подключения двигателя к преобразователю частоты приведена на рисунке В.2.

Рисунок В.2 – Схема подключения двигателя к преобразователю частоты

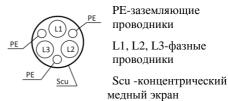


Рисунок В.3 – Пример экранированного кабеля

Проводники разных фаз при прокладке должны располагаться как можно ближе друг к другу. Заземляющие проводники должны располагаться симметрично фазным (Рис. В.3)

При длине кабеля между ПЧ и двигателем более 100 м необходима установка выходного фильтра, выбираемого согласно требованиям производителя ПЧ.

Также необходимо выровнять потенциалы между корпусами двигателя и рабочей машины проводником из плоского медного кабеля сечением не менее 0.75×70 мм или двух круглых медных кабелей площадью сечений не менее 50 мм^2 с расстоянием между ними не менее 150 мм. Если вал приводного механизма электрически изолирован от земли, то дополнительно необходимо установить щеточный контакт между корпусом двигателя и его валом.

Кабели для подключения вспомогательного оборудования (энкодера, термодатчика и т.д.) должны быть экранированы и прокладываться отдельно от силовых кабелей. Экраны должны быть электрически изолированы от двигателя и заземлены у ПЧ или другого устройства, использующего сигналы вспомогательного оборудования. Если экраны кабелей вспомогательных устройств подключены к отдельной клемме, то они должны быть соединены с экраном кабелей для их подключения.

- 6.2 При способе охлаждения IC416 подключение узла независимой вентиляции должно быть выполнено к отдельной цепи (не использовать цепь питания двигателя). Схемы подключения и характеристики вентиляторов указаны в паспорте на узел вентиляции. Направление вращения вентилятора согласно указанием стрелки на кожухе вентилятора.
- 6.3 При маркировке в типе двигателя буквой «И» датчик положения вала ротора (энкодер) подключать к специальному разъему, установленному на корпусе двигателя, коробке выводов или на самом датчике (в зависимости от типа датчика). Схемы подключения и характеристики указаны в паспорте на датчик.

7. Настройка ПЧ

Настройка ПЧ должна производиться в соответствии с руководством пользователя на ПЧ с учетом указанных ниже требований и рекомендаций.

- 7.1 Перед началом эксплуатации двигателя в ПЧ необходимо ввести данные двигателя с его таблички и выполнить автоматическую настройку ПЧ. При наличии в ПЧ такой функции, необходимо произвести автоматическую настройку с вращающимся ротором двигателя. При этом конец вала двигателя должен быть свободен.
- 7.2 В режиме холостого хода на некоторых частотах возможно возникновение электромагнитного резонанса между ПЧ и двигателем, который может помешать автоматической настройке. В этом случае для снижения энергии резонанса необходимо включить в ПЧ функцию оптимизации магнитного потока двигателя. В случае повышенных требований к динами-

ческим характеристикам привода функция оптимизация магнитного потока двигателя после автонастройки должна быть отключена.

- 7.3 В случае возникновения на определенных частотах в системе привода механических или электромагнитных резонансов продолжительная работа двигателя на данных частотах должна быть исключена настройкой в ПЧ пропуска частотных окон.
- 7.4 При пуске двигателя от ПЧ его электромагнитный момент ограничен максимальным моментом, величина которого указана в каталоге трёхфазных низковольтных частотно-регулируемых электродвигателей с короткозамкнутым ротором общепромышленного исполнения. При выборе времени пуска двигателя следует руководствоваться допустимой времятоковой характеристикой двигателя, приведенной на рисунке В.4.

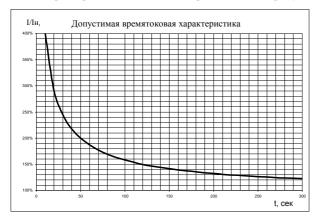


Рисунок В.4 – Допустимая времятоковая характеристика асинхронного двигателя

7.5 Для снижения магнитного шума двигателя необходимо повысить несущую частоту выходного напряжения ПЧ (частоту ШИМ). При этом необходимо учесть снижение мощности ПЧ при увеличении несущей частоты (см. руководство пользователя на ПЧ).

Приложение Г (справочное)

Таблица Г.1- Момент затяжки контактных болтовых соединений

Тип двигателя	Установочный размер станины Число пар полюсов (р) Класс энергоэффективности (IE)	Диаметр резьбы	Момент затяжки контактных болтов, $H \cdot M$, $\pm 10\%$	
RA71-90	все	M4	1,0	
RA100	LB4(IE0); L2(IE1, IE2); L6(IE1); LA4(IE1)		-,-	
D 4 112	LB4(IE1, IE2); LA4(IE2), L6(IE2)	3.65	2.0	
RA112	все	M5	2,0	
RA132	все	3.46	2.0	
RA160,180	все	M6	3,0	
RA200	все	M6	3,0	
RA225	все	M8	7,0	
RA250	все	M8	7,0	
RA280	все	M10	14,0	
	M4(IE2); S, M6, M8(IE, IE2)	IVIIO	17,0	
RA315	LA; LB (IE2, IE3)	M12	24.0	
	M2(IE2); M4(IE3)	IVI I Z	24,0	
RA355,400	все	M12	24,0	
A71-90	все	M4		
A100	S2(IE1); S4(IE0)	IV14		
A100	S2(IE2); S4, L2,L4,L6(IE1,IE2)			
A112	все	M5	2,0	
A132	все			
АИР160, А180	все	M6	3,0	
	M6(IE1, IE2); L6(IE0, IE1); M8(IE2);	MC	2.0	
A200	L8(IE1); M12,LA12,LB12	M6	3,0	
	M2(IE2); L2(IE2); M4(IE1, IE2); L4(IE1)	M8		
A225	все	M8	7,0	
A250	все			
	S; M6,8(IE, IE2)	M10	14,0	
A280	M2,4(IE2)		,-	
	M4(IE3)	3.610	24.0	
A315,355,400	все	M12	24,0	

Приложение Ж (справочное)

Таблица Ж.1- Момент затяжки резьбовых соединений, $\text{Hm} \pm 10\%$

Резьба	Резьбовы	Резьбовых соединений					
ГОСТ	по классу	прочности	ι ΓΟCT ISO	898-1-2014			
24705-81	4,6						
M6	3,8	6,4	7,7	10,0			
M8	9,3	16,0	19,0	23,0			
M10	19,0	31,0	37,0	46,0			
M12	32,0	54,0	65,0	79,0			
M16	79,0	130,0	155,0	195,0			
M20	155,0	255,0	305,0	395,0			
M24	265,0	440,0	530,0	710,0			

Приложение Д (справочное)

Таблица Д.1-Типоразмеры прокладки уплотнительной кабельного ввода для стандартного варианта двигателя

Тип двигателя	Типоразмер прокладки уплотнительной	Диаметр кабеля, мм
RA71-100; A71-100	M25-11 M25-14*	9 14
RA112,132 A100,112,132	M32-13 M32-16* M32-19	11 19
RA160,180 АИР160,180	M40-26* M40-23 M40-20	18 26
RA200,225,250 A200,225	M50-33* M50-30 M50-27	25 33
RA280-400 A250-400	M63-46* M63-42 M63-38	3646

Примечание.

Уплотнительная прокладка, обозначенная *, установлена в кабельном вводе двигателя. Остальные уплотнительные прокладки, упакованные в полиэтиленовый пакет, находятся внутри коробки выводов.

Приложение E (справочное)

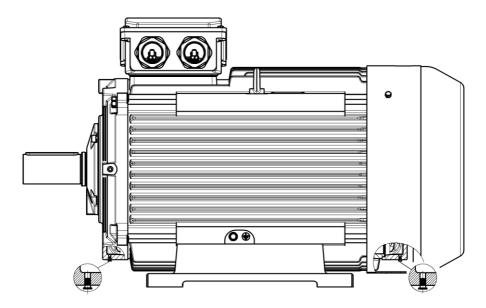


Рисунок Е.1 – Место положения сливных отверстий с заглушками в подшипниковых щитах двигателя

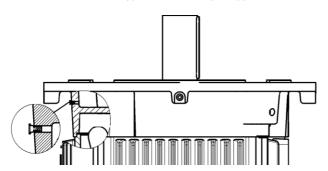


Рисунок Е.2 – Место положения сливного отверстия с заглушкой во фланцевом щите двигателя

Адрес производителя:
Россия, 150040, г. Ярославль, проспект Октября, 74
тел.: (4852) 78-02-00, 78-02-80 факс: (4852) 78-00-01, 78-02-05
e-mail: marketing@eldin.ru, servise@eldin.ru, info@eldin.ru

internet: http://www.eldin.ru